Daniella Goldfarb

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/342032/publications.pdf

Version: 2024-02-01

154 papers 6,788 citations

57758 44 h-index 72 g-index

176 all docs

176 docs citations

176 times ranked

5413 citing authors

#	Article	IF	CITATIONS
1	Structural disorder of monomeric α-synuclein persists in mammalian cells. Nature, 2016, 530, 45-50.	27.8	720
2	Probing Protein Conformation in Cells by EPR Distance Measurements using Gd ³⁺ Spin Labeling. Journal of the American Chemical Society, 2014, 136, 13458-13465.	13.7	187
3	Gd3+ spin labeling for distance measurements by pulse EPR spectroscopy. Physical Chemistry Chemical Physics, 2014, 16, 9685.	2.8	163
4	Nature and Surface Redox Properties of Copper(II)-Promoted Cerium(IV) Oxide CO-Oxidation Catalysts. Chemistry of Materials, 2000, 12, 3715-3725.	6.7	150
5	Nanometer-Scale Distance Measurements in Proteins Using Gd ³⁺ Spin Labeling. Journal of the American Chemical Society, 2010, 132, 9040-9048.	13.7	143
6	Resolving Intermediate Solution Structures during the Formation of Mesoporous SBA-15. Journal of the American Chemical Society, 2006, 128, 3366-3374.	13.7	138
7	Gd ³⁺ Complexes as Potential Spin Labels for High Field Pulsed EPR Distance Measurements. Journal of the American Chemical Society, 2007, 129, 14138-14139.	13.7	138
8	Study of the Formation of the Mesoporous Material SBA-15 by EPR Spectroscopy. Journal of Physical Chemistry B, 2003, 107, 1739-1748.	2.6	127
9	Benchmark Test and Guidelines for DEER/PELDOR Experiments on Nitroxide-Labeled Biomolecules. Journal of the American Chemical Society, 2021, 143, 17875-17890.	13.7	124
10	HYSCORE and DEER with an upgraded 95GHz pulse EPR spectrometer. Journal of Magnetic Resonance, 2008, 194, 8-15.	2.1	120
11	EPR Studies of the Formation Mechanism of the Mesoporous Materials MCM-41 and MCM-50. Journal of Physical Chemistry B, 1997, 101, 7087-7094.	2.6	115
12	Gadolinium Tagging for High-Precision Measurements of 6 nm Distances in Protein Assemblies by EPR. Journal of the American Chemical Society, 2011, 133, 10418-10421.	13.7	104
13	Dynamic nuclear polarization in the solid state: a transition between the cross effect and the solid effect. Physical Chemistry Chemical Physics, 2012, 14, 5729.	2.8	103
14	Study of the Initial Formation Stages of the Mesoporous Material SBA-15 Using Spin-Labeled Block Co-polymer Templates. Journal of Physical Chemistry B, 2004, 108, 9016-9022.	2.6	95
15	A Reactive, Rigid Gd ^{III} Labeling Tag for Inâ€Cell EPR Distance Measurements in Proteins. Angewandte Chemie - International Edition, 2017, 56, 2914-2918.	13.8	88
16	High-Field EPR Reveals the Strongly Temperature-Dependent Exchange Interaction in "Breathing― Crystals Cu(hfac) ₂ L ^R . Journal of the American Chemical Society, 2008, 130, 2444-2445.	13.7	87
17	Spectrometer manager: A versatile control software for pulse EPR spectrometers. Concepts in Magnetic Resonance Part B, 2005, 26B, 36-45.	0.7	81
18	Geometry and Framework Interactions of Zeolite-Encapsulated Copper(II)â^'Histidine Complexes. Journal of the American Chemical Society, 2000, 122, 11488-11496.	13.7	76

#	Article	IF	CITATIONS
19	Spectroscopic selection of distance measurements in a protein dimer with mixed nitroxide and Gd3+ spin labels. Physical Chemistry Chemical Physics, 2012, 14, 4355.	2.8	73
20	Carboxylate Binding in Copper Histidine Complexes in Solution and in Zeolite Y:  X- and W-band Pulsed EPR/ENDOR Combined with DFT Calculations. Journal of the American Chemical Society, 2004, 126, 11733-11745.	13.7	72
21	Nanometer-Range Distance Measurement in a Protein Using Mn ²⁺ Tags. Journal of Physical Chemistry Letters, 2012, 3, 157-160.	4.6	72
22	Determining the Oligomeric Structure of Proteorhodopsin by Gd3+-Based Pulsed Dipolar Spectroscopy of Multiple Distances. Structure, 2014, 22, 1677-1686.	3.3	72
23	Aggregation and Self-Assembly of Amphiphilic Block Copolymers in Aqueous Dispersions of Carbon Nanotubes. Langmuir, 2008, 24, 4625-4632.	3.5	71
24	Gd(<scp>iii</scp>)–Gd(<scp>iii</scp>) EPR distance measurements – the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics, 2015, 17, 18464-18476.	2.8	71
25	Structure of Copper(II)â^'Histidine Based Complexes in Frozen Aqueous Solutions As Determined from High-Field Pulsed Electron Nuclear Double Resonance. Inorganic Chemistry, 2001, 40, 781-787.	4.0	63
26	Axial Solvent Coordination in "Base-Off―Cob(II)alamin and Related Co(II)-Corrinates Revealed by 2D-EPR. Journal of the American Chemical Society, 2003, 125, 5915-5927.	13.7	62
27	Formation Mechanism of Cubic Mesoporous Carbon Monolith Synthesized by Evaporation-Induced Self-assembly. Chemistry of Materials, 2012, 24, 383-392.	6.7	62
28	Gd3+ Spin Labeling for Measuring Distances in Biomacromolecules. Methods in Enzymology, 2015, 563, 415-457.	1.0	59
29	High Sensitivity In-Cell EPR Distance Measurements on Proteins using an Optimized Gd(III) Spin Label. Journal of Physical Chemistry Letters, 2018, 9, 6119-6123.	4.6	59
30	Utilizing ESEEM Spectroscopy to Locate the Position of Specific Regions of Membrane-Active Peptides within Model Membranes. Biophysical Journal, 2006, 90, 492-505.	0.5	56
31	Molecular Level Processes and Nanostructure Evolution During the Formation of the Cubic Mesoporous Material KIT-6. Chemistry of Materials, 2008, 20, 2779-2792.	6.7	56
32	In-Cell Trityl–Trityl Distance Measurements on Proteins. Journal of Physical Chemistry Letters, 2020, 11, 1141-1147.	4.6	55
33	W-Band pulse EPR distance measurements in peptides using Gd3+–dipicolinic acid derivatives as spin labels. Physical Chemistry Chemical Physics, 2011, 13, 10771.	2.8	54
34	Gadolinium(III) Spin Labels for Highâ€Sensitivity Distance Measurements in Transmembrane Helices. Angewandte Chemie - International Edition, 2013, 52, 11831-11834.	13.8	54
35	MAS n.m.r. and e.s.r. studies of MnAlPO5. Zeolites, 1989, 9, 509-515.	0.5	52
36	W-band orientation selective DEER measurements on a Gd3+/nitroxide mixed-labeled protein dimer with a dual mode cavity. Journal of Magnetic Resonance, 2013, 227, 66-71.	2.1	52

#	Article	IF	CITATIONS
37	Study of copper(II) binding to chiral tripodal ligands by electron spin echo spectroscopy. Journal of the American Chemical Society, 1991, 113, 1941-1948.	13.7	51
38	The 170 Hyperfine Interaction in V170 (H2170)52+and Mn(H2170)62+Determined by High Field ENDOR Aided by DFT Calculations. Journal of Physical Chemistry A, 2005, 109, 7865-7871.	2.5	51
39	W-Band ENDOR Investigation of the Manganese-Binding Site of Concanavalin A:  Determination of Proton Hyperfine Couplings and Their Signs. Journal of the American Chemical Society, 2000, 122, 3488-3494.	13.7	50
40	Elucidation of Structure and Location of V(IV) Ions in Heteropolyacid Catalysts H4PVMo11O40as Studied by Hyperfine Sublevel Correlation Spectroscopy and Pulsed Electron Nuclear Double Resonance at W- and X-Band Frequencies. Journal of the American Chemical Society, 2001, 123, 4577-4584.	13.7	50
41	Electronic Structure of Binuclear Mixed Valence Copper Azacryptates Derived from Integrated Advanced EPR and DFT Calculations. Journal of the American Chemical Society, 2006, 128, 2017-2029.	13.7	50
42	Improved sensitivity for W-band Gd(III)-Gd(III) and nitroxide-nitroxide DEER measurements with shaped pulses. Journal of Magnetic Resonance, 2017, 283, 1-13.	2.1	49
43	In-cell destabilization of a homodimeric protein complex detected by DEER spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 20566-20575.	7.1	47
44	Dynamics of water molecules in VPI-5 and AlPO4-5 studied by deuterium NMR spectroscopy. Journal of the American Chemical Society, 1992, 114, 3690-3697.	13.7	45
45	Selective Distance Measurements Using Triple Spin Labeling with Gd ³⁺ , Mn ²⁺ , and a Nitroxide. Journal of Physical Chemistry Letters, 2017, 8, 5277-5282.	4.6	45
46	W- and X-Band Pulsed Electron Nuclear Double-Resonance Study of a Sodiumâ [°] Nitric Oxide Adsorption Complex in NaA Zeolites. Journal of the American Chemical Society, 2000, 122, 10194-10200.	13.7	44
47	The Formation of the Mesoporous Material MCM-41 as Studied by EPR Line Shape Analysis of Spin Probes. Journal of Physical Chemistry B, 2000, 104, 279-285.	2.6	44
48	A Dynamic Nuclear Polarization spectrometer at 95GHz/144MHz with EPR and NMR excitation and detection capabilities. Journal of Magnetic Resonance, 2011, 209, 136-141.	2.1	43
49	A New Gd ³⁺ Spin Label for Gd ³⁺ â€"Gd ³⁺ Distance Measurements in Proteins Produces Narrow Distance Distributions. Journal of Physical Chemistry Letters, 2015, 6, 5016-5021.	4.6	42
50	Mn(<scp>ii</scp>) tags for DEER distance measurements in proteins via C–S attachment. Dalton Transactions, 2015, 44, 20812-20816.	3.3	42
51	High field ENDOR as a characterization tool for functional sites in microporous materials. Physical Chemistry Chemical Physics, 2006, 8, 2325.	2.8	41
52	Determination of the 14N quadrupole coupling constant of nitroxide spin probes by W-band ELDOR-detected NMR. Journal of Magnetic Resonance, 2011, 210, 192-199.	2.1	39
53	A Combined Pulse EPR and Monte Carlo Simulation Study Provides Molecular Insight on Peptideâ^'Membrane Interactions. Journal of Physical Chemistry B, 2009, 113, 12687-12695.	2.6	38
54	DEER distance measurements on trityl/trityl and Gd(<scp>iii</scp>)/trityl labelled proteins. Physical Chemistry Chemical Physics, 2019, 21, 10217-10227.	2.8	38

#	Article	IF	CITATIONS
55	Magnetic resonance studies of SAPO-44 and MnAPSO-44. Journal of the American Chemical Society, 1993, 115, 1106-1114.	13.7	37
56	Pulsed EPR/ENDOR Characterization of Perturbations of the CuACenter Ground State by Axial Methionine Ligand Mutations. Journal of the American Chemical Society, 2001, 123, 5325-5336.	13.7	37
57	Investigation of the Formation of MCM-41 by Electron Spinâ^'Echo Envelope Modulation Spectroscopy. Journal of Physical Chemistry B, 2002, 106, 5382-5389.	2.6	37
58	Self-Assembly of Pluronic Block Copolymers in Aqueous Dispersions of Single-Wall Carbon Nanotubes as Observed by Spin Probe EPR. Langmuir, 2008, 24, 3773-3779.	3.5	37
59	Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Physical Chemistry Chemical Physics, 2010, 12, 7276.	2.8	37
60	Temperature-Dependent Exchange Interaction in Molecular Magnets Cu(hfac) ₂ L ^R Studied by EPR: Methodology and Interpretations. Inorganic Chemistry, 2011, 50, 10204-10212.	4.0	37
61	Interactions of Cu(II) Ions with Framework Al in High Si:Al Zeolite Y as Determined from X- and W-Band Pulsed EPR/ENDOR Spectroscopies. Journal of Physical Chemistry B, 2002, 106, 5428-5437.	2.6	36
62	Investigation of Model Membrane Disruption Mechanism by Melittin using Pulse Electron Paramagnetic Resonance Spectroscopy and Cryogenic Transmission Electron Microscopy. Journal of Physical Chemistry B, 2012, 116, 179-188.	2.6	36
63	In-Cell EPR Distance Measurements on Ubiquitin Labeled with a Rigid PyMTA-Gd(III) Tag. Journal of Physical Chemistry B, 2019, 123, 1050-1059.	2.6	36
64	Altered conformational sampling along an evolutionary trajectory changes the catalytic activity of an enzyme. Nature Communications, 2020, 11, 5945.	12.8	36
65	Electron-Mediating CuA Centers in Proteins:  A Comparative High Field 1H ENDOR Study. Journal of the American Chemical Society, 2002, 124, 8152-8162.	13.7	35
66	Double Electron Electron Resonance as a Method for Characterization of Micelles. Journal of Physical Chemistry B, 2005, 109, 22843-22851.	2.6	35
67	Highâ€Field Pulsed EPR Spectroscopy for the Speciation of the Reduced [PV ₂ Mo ₁₀ O ₄₀] ^{6â°'} Polyoxometalate Catalyst Used in Electronâ€Transfer Oxidations. Chemistry - A European Journal, 2010, 16, 10014-10020.	3.3	35
68	Extending the distance range accessed with continuous wave EPR with Gd3+ spin probes at high magnetic fields. Physical Chemistry Chemical Physics, 2013, 15, 11313.	2.8	35
69	Effect of electron spectral diffusion on static dynamic nuclear polarization at 7 Tesla. Physical Chemistry Chemical Physics, 2017, 19, 3596-3605.	2.8	35
70	Two closed ATP- and ADP-dependent conformations in yeast Hsp90 chaperone detected by Mn(II) EPR spectroscopic techniques. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 395-404.	7.1	35
71	High-Resolution Cryogenic-Electron Microscopy Reveals Details of a Hexagonal-to-Bicontinuous Cubic Phase Transition in Mesoporous Silica Synthesis. Journal of the American Chemical Society, 2009, 131, 12466-12473.	13.7	34
72	Direct Spectroscopic Detection of ATP Turnover Reveals Mechanistic Divergence of ABC Exporters. Structure, 2017, 25, 1264-1274.e3.	3.3	34

#	Article	IF	CITATIONS
73	Properties of the Silica Layer during the Formation of MCM-41 Studied by EPR of a Silica-Bound Spin Probe. Journal of Physical Chemistry B, 2005, 109, 7807-7816.	2.6	32
74	Dynamic Hydrogen-Bonding Network in the Distal Pocket of the Nitrosyl Complex of Pseudomonas aeruginosa cd $<$ sub $>$ 1 $<$ /sub $>$ Nitrite Reductase. Journal of the American Chemical Society, 2011, 133, 3043-3055.	13.7	32
75	Static 1H dynamic nuclear polarization with the biradical TOTAPOL: a transition between the solid effect and the cross effect. Physical Chemistry Chemical Physics, 2014, 16, 6687-6699.	2.8	32
76	Rates and equilibrium constants of the ligand-induced conformational transition of an HCN ion channel protein domain determined by DEER spectroscopy. Physical Chemistry Chemical Physics, 2017, 19, 15324-15334.	2.8	32
77	Exploring protein conformations inÂvitro and in cell with EPR distance measurements. Current Opinion in Structural Biology, 2022, 75, 102398.	5.7	32
78	Interaction of Nitrates with Pluronic Micelles and Their Role in the Phase Formation of Mesoporous Materials. Journal of Physical Chemistry C, 2007, 111, 10931-10940.	3.1	31
79	Tracking Conformational Changes in Calmodulin in vitro, in Cell Extract, and in Cells by Electron Paramagnetic Resonance Distance Measurements. ChemPhysChem, 2019, 20, 1860-1868.	2.1	31
80	Identity of the Exchangeable Sulfur-Containing Ligand at the Mo(V) Center of R160Q Human Sulfite Oxidase. Inorganic Chemistry, 2012, 51, 1408-1418.	4.0	30
81	Small Gd(III) Tags for Gd(III)–Gd(III) Distance Measurements in Proteins by EPR Spectroscopy. Inorganic Chemistry, 2018, 57, 5048-5059.	4.0	29
82	Distribution of guest molecules in Pluronic micelles studied by double electron electron spin resonance and small angle X-ray scattering. Physical Chemistry Chemical Physics, 2009, 11, 148-160.	2.8	28
83	Oxidation of Carbon Monoxide Cocatalyzed by Palladium(0) and the H ₅ PV ₂ Mo ₁₀ O ₄₀ Polyoxometalate Probed by Electron Paramagnetic Resonance and Aerobic Catalysis. Inorganic Chemistry, 2009, 48, 7947-7952.	4.0	28
84	Self-Assembly of Amphiphilic Block Copolymers in Dispersions of Multiwalled Carbon Nanotubes As Reported by Spin Probe Electron Paramagnetic Resonance Spectroscopy. Macromolecules, 2010, 43, 606-614.	4.8	28
85	The effect of Gd on trityl-based dynamic nuclear polarisation in solids. Physical Chemistry Chemical Physics, 2015, 17, 26969-26978.	2.8	28
86	Overcoming artificial broadening in Gd ³⁺ –Gd ³⁺ distance distributions arising from dipolar pseudo-secular terms in DEER experiments. Physical Chemistry Chemical Physics, 2016, 18, 12847-12859.	2.8	28
87	Proton Positions in the Mn2+Binding Site of Concanavalin A as Determined by Single-Crystal High-Field ENDOR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 8378-8386.	13.7	27
88	Manganese Incorporation into the Mesoporous Material MCM-41 under Acidic Conditions as Studied by High Field Pulsed EPR and ENDOR Spectroscopies. Journal of the American Chemical Society, 2000, 122, 7034-7041.	13.7	26
89	Distance measurements between manganese(<scp>ii</scp>) and nitroxide spin-labels by DEER determine a binding site of Mn ²⁺ in the HP92 loop of ribosomal RNA. Physical Chemistry Chemical Physics, 2015, 17, 15098-15102.	2.8	26
90	Fourier transform electron spin echo envelope modulation of aS=1/2,I=5/2 spin system: An exact analysis and a second order perturbation approach. Journal of Chemical Physics, 1992, 96, 6464-6476.	3.0	25

#	Article	IF	Citations
91	Probing Water Density and Dynamics in the Chaperonin GroEL Cavity. Journal of the American Chemical Society, 2014, 136, 9396-9403.	13.7	25
92	Doubleâ€Arm Lanthanide Tags Deliver Narrow Gd ³⁺ –Gd ³⁺ Distance Distributions in Double Electron–Electron Resonance (DEER) Measurements. Chemistry - A European Journal, 2017, 23, 11694-11702.	3.3	25
93	Mutations of the Weak Axial Ligand in the Thermus CuA Center Modulates Its Electronic Structure. Journal of the American Chemical Society, 1999, 121, 5077-5078.	13.7	24
94	The Catalytic Mn2+Sites in the Enolaseâ^'Inhibitor Complex:Â Crystallography, Single-Crystal EPR, and DFT Calculations. Journal of the American Chemical Society, 2007, 129, 4240-4252.	13.7	24
95	Investigation of the Surfactant Role in the Synthesis of Mesoporous Alumina. Journal of Physical Chemistry C, 2010, 114, 28-35.	3.1	23
96	Simultaneous DNP enhancements of ¹ H and ¹³ C nuclei: theory and experiments. Physical Chemistry Chemical Physics, 2015, 17, 11868-11883.	2.8	23
97	Gd3+–Gd3+ distances exceeding 3 nm determined by very high frequency continuous wave electron paramagnetic resonance. Physical Chemistry Chemical Physics, 2017, 19, 5127-5136.	2.8	23
98	A Reactive, Rigid Gd ^{III} Labeling Tag for Inâ€Cell EPR Distance Measurements in Proteins. Angewandte Chemie, 2017, 129, 2960-2964.	2.0	23
99	Time domain simulation of Gd3+–Gd3+ distance measurements by EPR. Journal of Chemical Physics, 2017, 147, 044201.	3.0	23
100	Probing the solution structure of the E. coli multidrug transporter MdfA using DEER distance measurements with nitroxide and Gd(III) spin labels. Scientific Reports, 2019, 9, 12528.	3.3	23
101	Role of Copper in the Characterization of Copper(II)-Promoted Tin(IV) Oxide Catalysts for the Catalytic Oxidation of Carbon Monoxide. Chemistry of Materials, 1999, 11, 3643-3654.	6.7	22
102	A triple resonance hyperfine sublevel correlation experiment for assignment of electron-nuclear double resonance lines. Journal of Chemical Physics, 2008, 128, 052320.	3.0	22
103	Small neutral Gd(<scp>iii</scp>) tags for distance measurements in proteins by double electron–electron resonance experiments. Physical Chemistry Chemical Physics, 2018, 20, 23535-23545.	2.8	22
104	Pulse EPR in biological systems – Beyond the expert's courtyard. Journal of Magnetic Resonance, 2019, 306, 102-108.	2.1	21
105	Structure and dynamics of copper complexes with 2,2′:6′,2″-terpyridines in glassy matrices. Physical Chemistry Chemical Physics, 2003, 5, 3959-3967.	2.8	20
106	EPR studies on the organization of self-assembled spin-labeled organic monolayers adsorbed on GaAs. Physical Chemistry Chemical Physics, 2005, 7, 524.	2.8	20
107	Evolution of Solution Structures during the Formation of the Cubic Mesoporous Material, KIT-6, Determined by Double Electronâ 'Electron Resonance. Journal of Physical Chemistry C, 2008, 112, 7102-7109.	3.1	20
108	Studying Supramolecular Assemblies by ESEEM Spectroscopy: Inclusion Complexes of Cyclodextrins. Journal of Physical Chemistry B, 2009, 113, 5781-5787.	2.6	20

#	Article	IF	Citations
109	Correlating nuclear frequencies by two-dimensional ELDOR-detected NMR spectroscopy. Journal of Magnetic Resonance, 2014, 240, 77-89.	2.1	20
110	Assessing protein conformational landscapes: integration of DEER data in Maximum Occurrence analysis. Physical Chemistry Chemical Physics, 2018, 20, 27429-27438.	2.8	20
111	rDEER: A Modified DEER Sequence for Distance Measurements Using Shaped Pulses. Magnetochemistry, 2019, 5, 20.	2.4	20
112	Generic tags for Mn(<scp>ii</scp>) and Gd(<scp>iii</scp>) spin labels for distance measurements in proteins. Physical Chemistry Chemical Physics, 2017, 19, 26944-26956.	2.8	19
113	Probing Conformational Variations at the ATPase Site of the RNA Helicase DbpA by High-Field Electron–Nuclear Double Resonance Spectroscopy. Journal of the American Chemical Society, 2011, 133, 15514-15523.	13.7	18
114	Characteristics of Gd(III) spin labels for the study of protein conformations. Methods in Enzymology, 2021, 651, 235-290.	1.0	18
115	Neural networks in pulsed dipolar spectroscopy: A practical guide. Journal of Magnetic Resonance, 2022, 338, 107186.	2.1	18
116	High Field27Al ENDOR Reveals the Coordination Mode of Cu2+in Low Si/Al Zeolites. Journal of the American Chemical Society, 2006, 128, 7160-7161.	13.7	16
117	EPR detected polarization transfer between Gd3+ and protons at low temperature and 3.3 T: The first step of dynamic nuclear polarization. Journal of Chemical Physics, 2010, 132, 214504.	3.0	16
118	Correlation of the EPR properties of perchlorotriphenylmethyl radicals and their efficiency as DNP polarizers. Physical Chemistry Chemical Physics, 2011, 13, 18626.	2.8	16
119	Spin Delocalization Over Type Zero Copper. Inorganic Chemistry, 2012, 51, 4066-4075.	4.0	16
120	A novel microfluidic rapid freeze-quench device for trapping reactions intermediates for high field EPR analysis. Journal of Magnetic Resonance, 2013, 230, 220-226.	2.1	16
121	Topology of the Trans-Membrane Peptide WALP23 in Model Membranes under Negative Mismatch Conditions. Journal of Physical Chemistry B, 2013, 117, 2280-2293.	2.6	16
122	Synthesis of Lamellar Mesostructures with Nonamphiphilic Mesogens as Templates. Chemistry of Materials, 1996, 8, 2571-2578.	6.7	15
123	Gd ³⁺ Spin Labels Report the Conformation and Solvent Accessibility of Solution and Vesicle-Bound Melittin. Journal of Physical Chemistry B, 2015, 119, 13732-13741.	2.6	15
124	Analysis of 27Al nuclear quadrupole interaction effects on electron spin echo modulation in disordered systems. Journal of Chemical Physics, 1987, 87, 6323-6330.	3.0	14
125	The Mn2+â^Bicarbonate Complex in a Frozen Solution Revisited by Pulse W-Band ENDOR. Inorganic Chemistry, 2008, 47, 10491-10498.	4.0	14
126	Pulse EPR-enabled interpretation of scarce pseudocontact shifts induced by lanthanide binding tags. Journal of Biomolecular NMR, 2016, 64, 39-51.	2.8	14

#	Article	IF	Citations
127	Characterization of Cu2+ sites in zeolites NaX and KX by 27Al electron spin echo envelope modulation. Chemical Physics Letters, 1990, 171, 167-174.	2.6	13
128	Population transfer for signal enhancement in pulsed EPR experiments on half integer high spin systems. Physical Chemistry Chemical Physics, 2009, 11, 6799.	2.8	13
129	Heme d1 Nitrosyl Complex of cd1 Nitrite Reductase Studied by High-Field-Pulse Electron Paramagnetic Resonance Spectroscopy. Inorganic Chemistry, 2009, 48, 3913-3915.	4.0	11
130	Thiolate Spin Population of Type I Copper in Azurin Derived from ³³ S Hyperfine Coupling. Inorganic Chemistry, 2017, 56, 6163-6174.	4.0	11
131	The decay of the refocused Hahn echo in double electron–electron resonance (DEER) experiments. Magnetic Resonance, 2021, 2, 161-173.	1.9	11
132	Dynamics and structure in the Mn2+ site of concanavalin A as determined by high-field EPR and ENDOR spectroscopy. Magnetic Resonance in Chemistry, 2005, 43, S40-S50.	1.9	10
133	Resolving ligand hyperfine couplings of type 1 and 2 Cu(ii) in ascorbate oxidase by high field pulse EPRcorrelation spectroscopy. Physical Chemistry Chemical Physics, 2010, 12, 62-65.	2.8	10
134	Evolution of CPEB4 Dynamics Across its Liquid–Liquid Phase Separation Transition. Journal of Physical Chemistry B, 2021, 125, 12947-12957.	2.6	10
135	Synthesis of MCM-41 with a Phosphonium Template. Chemistry of Materials, 2005, 17, 3723-3727.	6.7	9
136	A Calibration Reaction for Rapid Freeze-Quench W-Band EPR. Applied Magnetic Resonance, 2010, 37, 845-850.	1.2	9
137	An electron spin resonance and electron spin-echo modulation study of paramagnetic rhodium species generated in Ca-Y and Na-Y zeolites. Journal of the American Chemical Society, 1987, 109, 2303-2311.	13.7	8
138	Single Crystal55Mn ENDOR of Concanavalin A:Â Detection of Two Mn2+Sites with Different55Mn Quadrupole Tensors. Journal of the American Chemical Society, 2007, 129, 5391-5402.	13.7	8
139	Characterization of borate glasses by W-band pulse electron-nuclear double resonance spectroscopy. Journal of Chemical Physics, 2008, 129, 154502.	3.0	8
140	Monitoring the Conformation of the Sba1/Hsp90 Complex in the Presence of Nucleotides with Mn(II)-Based Double Electron–Electron Resonance. Journal of Physical Chemistry Letters, 2021, 12, 12235-12241.	4.6	7
141	Membrane curvature and cholesterol effects on lipids packing and spin-labelled lipids conformational distributions. Molecular Physics, 2013, 111, 2887-2896.	1.7	6
142	The Topology, in Model Membranes, of the Core Peptide Derived from the Tâ€Cell Receptor Transmembrane Domain. ChemBioChem, 2013, 14, 1867-1875.	2.6	6
143	Triple resonance EPR spectroscopy determines the Mn2+ coordination to ATP. Journal of Magnetic Resonance, 2018, 294, 143-152.	2.1	6
144	Experimental quantification of electron spectral-diffusion under static DNP conditions. Physical Chemistry Chemical Physics, 2019, 21, 478-489.	2.8	6

#	Article	IF	CITATIONS
145	The interaction between the surfactant and the co-structure directing agent in anionic surfactant-templated mesoporous silicas. Microporous and Mesoporous Materials, 2012, 163, 291-299.	4.4	4
146	Cellâ€Free Synthesis of Selenoproteins in High Yield and Purity for Selective Protein Tagging. ChemBioChem, 2021, 22, 1480-1486.	2.6	4
147	Study of electron spectral diffusion process under DNP conditions by ELDOR spectroscopy focusing on the & mp;lt;sup& mp;gt;14& mp;lt;/sup& mp;gt;N solid effect. Magnetic Resonance, 2020, 1, 45-57.	1.9	4
148	Structural and EPR/ENDOR/ESEEM spectroscopic investigations of a vanadomolybdate Keggin-type polyoxometalate in organic solvent. Inorganica Chimica Acta, 2006, 359, 3072-3078.	2.4	3
149	Substrate binding in the multidrug transporter MdfA in detergent solution and in lipid nanodiscs. Biophysical Journal, 2021, 120, 1984-1993.	0.5	3
150	DEER experiments reveal fundamental differences between calmodulin complexes with IQ and MARCKS peptides in solution. Structure, 2022, 30, 813-827.e5.	3.3	3
151	Collection of Gas Chromatographic Fractions on Activated Charcoal and Identification by Infrared Spectroscopy. Applied Spectroscopy, 1979, 33, 126-130.	2.2	2
152	ATPase Site Configuration of the RNA Helicase DbpA Probed by ENDOR Spectroscopy. Methods in Molecular Biology, 2015, 1259, 137-164.	0.9	1
153	Correction: Gd(iii) $\hat{a}\in Gd(iii)$ EPR distance measurements $\hat{a}\in Gd(iii)$ the range of accessible distances and the impact of zero field splitting. Physical Chemistry Chemical Physics, 2016, 18, 18614-18614.	2.8	0
154	Supporting women postdocs in Israel. Nature, 2016, 534, 621-621.	27.8	0