Takeyuki Suzuki

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3418770/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Basic character of rare earth metal alkoxides. Utilization in catalytic carbon-carbon bond-forming reactions and catalytic asymmetric nitroaldol reactions. Journal of the American Chemical Society, 1992, 114, 4418-4420.	13.7	584
2	Readily Available [2.2.2]-Bicyclooctadienes as New Chiral Ligands for Ir(I):Â Catalytic, Kinetic Resolution of Allyl Carbonates. Journal of the American Chemical Society, 2004, 126, 1628-1629.	13.7	424
3	Organic Synthesis Involving Iridium-Catalyzed Oxidation. Chemical Reviews, 2011, 111, 1825-1845.	47.7	283
4	Efficient Diastereoselective and Enantioselective Nitroaldol Reactions from Prochiral Starting Materials: Utilization of La-Li-6,6'-Disubstituted BINOL Complexes as Asymmetric Catalysts. Journal of Organic Chemistry, 1995, 60, 7388-7389.	3.2	260
5	Catalytic asymmetric nitroaldol reaction using optically active rare earth BINOL complexes: investigation of the catalyst structure. Journal of the American Chemical Society, 1993, 115, 10372-10373.	13.7	219
6	Direct Catalytic Asymmetric Aldol Reaction: Synthesis of Eithersyn- oranti-α,β-Dihydroxy Ketones. Journal of the American Chemical Society, 2001, 123, 2466-2467.	13.7	191
7	Catalytic asymmetric nitroaldol reaction: An efficient synthesis of (S) propranolol using the lanthanum binaphthol complex. Tetrahedron Letters, 1993, 34, 855-858.	1.4	145
8	Catalytic asymmetric nitroaldol reactions. A new practical method for the preparation of the optically active lanthanum complex. Tetrahedron Letters, 1993, 34, 851-854.	1.4	137
9	Diastereoselective catalytic asymmetric nitroaldol reaction utilizing rare earth-Li-(R)-BINOL complex. A highly efficient synthesis of norstatine. Tetrahedron Letters, 1994, 35, 6123-6126.	1.4	116
10	Catalytic asymmetric aldol reaction of ketones and aldehydes using chiral calcium alkoxides. Tetrahedron Letters, 2001, 42, 4669-4671.	1.4	104
11	Mild and Chemoselective Synthesis of Lactones from Diols Using a Novel Metalâ^'Ligand Bifunctional Catalyst. Organic Letters, 2002, 4, 2361-2363.	4.6	103
12	Effects of rare earth metals on the catalytic asymmetric nitroaldol reaction. Tetrahedron Letters, 1993, 34, 2657-2660.	1.4	97
13	Iridium-Catalyzed Oppenauer Oxidations of Primary Alcohols Using Acetone or 2-Butanone as Oxidant. Journal of Organic Chemistry, 2003, 68, 1601-1602.	3.2	96
14	Development of Chiral Spiro Ligands for Metal-Catalyzed Asymmetric Reactions. Bulletin of the Chemical Society of Japan, 2009, 82, 285-302.	3.2	96
15	Catalytic Enantioselective Michael Reaction of 1,3-Dicarbonyl Compoundsvia Formation of Chiral Palladium Enolate. Advanced Synthesis and Catalysis, 2005, 347, 1576-1586.	4.3	92
16	Syntheses of (S)-(â^')-pindolol and [3′-13C]-(R)-(â^')-pindolol utilizing a lanthanum-lithium-(R)-BINOL ((R)-LLB) catalyzed nitroaldol reaction. Tetrahedron, 1994, 50, 12313-12318.	1.9	74
17	Iridium-catalyzed oxidative lactonization and intramolecular Tishchenko reaction of δ-ketoaldehydes for the synthesis of isocoumarins and 3,4-dihydroisocoumarins. Bioorganic and Medicinal Chemistry Letters, 2005, 15, 2583-2585.	2.2	63
18	Dual activation in oxidative coupling of 2-naphthols catalyzed by chiral dinuclear vanadium complexes. Tetrahedron, 2008, 64, 3361-3371.	1.9	63

#	Article	IF	CITATIONS
19	Chiral dinuclear vanadium(v) catalysts for oxidative coupling of 2-naphthols. Chemical Communications, 2008, , 1810.	4.1	60
20	A catalytic asymmetric synthesis of α-methylene lactones by the palladium-catalysed carbonylation of prochiral alkenyl halides. Journal of the Chemical Society Chemical Communications, 1991, , 1593-1595.	2.0	56
21	Catalytic asymmetric oxidative lactonizations of meso-diols using a chiral iridium complex. Tetrahedron Letters, 2003, 44, 2003-2006.	1.4	53
22	Diastereo- and Enantioselective Direct Catalytic Aldol Reaction of 2-Hydroxyacetophenones with Aldehydes Promoted by a Heteropolymetallic Complex:Â Catalytic Asymmetric Synthesis ofanti-1,2-Diols. Journal of Organic Chemistry, 2002, 67, 2556-2565.	3.2	49
23	Tishchenko Reaction Using an Iridium-Ligand Bifunctional Catalyst. Synlett, 2005, 2005, 1450-1452.	1.8	46
24	Morphological and crystal structural control of tungsten trioxide for highly sensitive NO ₂ gas sensors. Journal of Materials Chemistry C, 2015, 3, 1134-1141.	5.5	46
25	Enantioselective Wacker-Type Cyclization of 2-Alkenyl-1,3-diketones Promoted by Pd-SPRIX Catalyst. Organic Letters, 2010, 12, 3480-3483.	4.6	45
26	Catalytic asymmetric synthesis of propranolol and metoprolol using a La-Li-BINOL complex. Applied Organometallic Chemistry, 1995, 9, 421-426.	3.5	42
27	Enantioselective 6-endo-trig Wacker-type cyclization of 2-geranylphenols: application to a facile synthesis of (â^')-cordiachromene. Tetrahedron: Asymmetry, 2010, 21, 767-770.	1.8	40
28	Catalytic asymmetric Michael reactions using a chiral rhodium complex. Tetrahedron: Asymmetry, 2001, 12, 1077-1081.	1.8	37
29	Solution Synthesis of <i>N</i> , <i>N</i> â€Dimethylformamideâ€Stabilized Ironâ€Oxide Nanoparticles as an Efficient and Recyclable Catalyst for Alkene Hydrosilylation. ChemCatChem, 2018, 10, 2378-2382.	3.7	37
30	Ir-Catalyzed Oxidative Desymmetrization of <i>meso</i> -Diols. Organic Letters, 2009, 11, 4286-4288.	4.6	36
31	Nickelâ€Catalyzed Construction of Chiral 1â€{6]Helicenols and Application in the Synthesis of [6]Heliceneâ€Based Phosphinite Ligands. European Journal of Organic Chemistry, 2016, 2016, 4948-4952.	2.4	35
32	N,N-Dimethylformamide-stabilized copper nanoparticles as a catalyst precursor for Sonogashira–Hagihara cross coupling. RSC Advances, 2017, 7, 22869-22874.	3.6	35
33	Recent topics in the desymmetrization of meso-diols. Tetrahedron Letters, 2017, 58, 4731-4739.	1.4	35
34	Enantioselective Total Synthesis of (â^')-Candelalide A, a Novel Blocker of the Voltage-Gated Potassium Channel Kv1.3 for an Immunosuppressive Agent. Organic Letters, 2005, 7, 3745-3748.	4.6	34
35	Tetrahedral Copper(II) Complexes with a Labile Coordination Site Supported by a Tris-tetramethylguanidinato Ligand. Inorganic Chemistry, 2017, 56, 9634-9645.	4.0	34
36	Supramolecular Photochirogenesis with a Higher-Order Complex: Highly Accelerated Exclusively Head-to-Head Photocyclodimerization of 2-Anthracenecarboxylic Acid via 2:2 Complexation with Prolinol. Journal of the American Chemical Society, 2016, 138, 12187-12201.	13.7	31

#	Article	IF	CITATIONS
37	Iridium-Catalyzed Oxidative Dimerization of Primary Alcohols to Esters Using 2-Butanone as an Oxidant. Synlett, 2005, 2005, 1453-1455.	1.8	30
38	Enantiocontrolled synthesis of the epoxycyclohexenone moieties of scyphostatin, a potent and specific inhibitor of neutral sphingomyelinase. Tetrahedron, 2006, 62, 1590-1608.	1.9	30
39	Generation, Characterization, and Reactivity of a Cu ^{II} –Alkylperoxide/Anilino Radical Complex: Insight into the O–O Bond Cleavage Mechanism. Journal of the American Chemical Society, 2015, 137, 10870-10873.	13.7	29
40	Design and synthesis of chiral hybrid spiro (isoxazole–isoxazoline) ligands. Tetrahedron: Asymmetry, 2007, 18, 919-923.	1.8	28
41	Dehydrative glycosylation of tri-O-benzylated 1-hydroxyribofuranose catalyzed by a copper(II) complex. Tetrahedron Letters, 2003, 44, 2561-2563.	1.4	25
42	<i>N</i> , <i>N</i> -Dimethylformamide-stabilized palladium nanoclusters as a catalyst for Larock indole synthesis. RSC Advances, 2018, 8, 11324-11329.	3.6	25
43	Enantioselective Pictet–Spengler Reaction of Acyclic α-Ketoesters Using Chiral Imidazoline-Phosphoric Acid Catalysts. Organic Letters, 2022, 24, 1072-1076.	4.6	25
44	Enantioselective glyoxylate-ene reaction using a novel spiro bis(isoxazoline) ligand in copper catalysis. Tetrahedron: Asymmetry, 2007, 18, 372-376.	1.8	24
45	High performance solution-crystallized thin-film transistors based on V-shaped thieno[3,2-f:4,5-fâ€2]bis[1]benzothiophene semiconductors. Journal of Materials Chemistry C, 2017, 5, 1903-1909.	5.5	22
46	Convergent and enantioselective total synthesis of (â^)-nalanthalide, a potential Kv1.3 blocking immunosuppressant. Tetrahedron Letters, 2006, 47, 3251-3255.	1.4	21
47	Enantioselective Total Synthesis of (+)â€Ottelione A, (â~')â€Ottelione B, (+)â€3â€ <i>epi</i> â€Ottelione A and Preliminary Evaluation of Their Antitumor Activity. Chemistry - A European Journal, 2007, 13, 9866-9881.	3.3	21
48	Palladium(II)â€Catalyzed Dehydroboration via Generation of Boron Enolates. Chemistry - A European Journal, 2016, 22, 18686-18689.	3.3	20
49	Chemo- and enantioselective hetero-coupling of hydroxycarbazoles catalyzed by a chiral vanadium(<scp>v</scp>) complex. Organic Chemistry Frontiers, 2021, 8, 4878-4885.	4.5	20
50	Pd(ii)–SDP-catalyzed enantioselective 5-exo-dig cyclization of γ-alkynoic acids: application to the synthesis of functionalized dihydofuran-2(3H)-ones containing a chiral quaternary carbon center. Organic and Biomolecular Chemistry, 2013, 11, 5936.	2.8	19
51	Helically Chiral 1-Sulfur-Functionalized [6]Helicene: Synthesis, Optical Resolution, and Functionalization. Organic Letters, 2017, 19, 3311-3314.	4.6	19
52	Facile Synthesis of Spirooxindoles via an Enantioselective Organocatalyzed Sequential Reaction of Oxindoles with Ynone. Heterocycles, 2017, 95, 761.	0.7	19
53	Synthesis and Characterization of <i>N</i> , <i>N</i> -Dimethylformamide-Protected Palladium Nanoparticles and Their Use in the Suzuki–Miyaura Cross-Coupling Reaction. ACS Omega, 2020, 5, 9598-9604.	3.5	19
54	Catalytic Enantioselective Synthesis of <i>N</i> , <i>N</i> â€Acetals from αâ€Dicarbonyl Compounds Using Chiral Imidazolineâ€Phosphoric Acid Catalysts. Advanced Synthesis and Catalysis, 2020, 362, 5374-5379.	4.3	18

#	Article	IF	CITATIONS
55	Self-Assembled Multilayer Iron(0) Nanoparticle Catalyst for Ligand-Free Carbon–Carbon/Carbon–Nitrogen Bond-Forming Reactions. Organic Letters, 2020, 22, 7244-7249.	4.6	18
56	Enantiodivergent Reaction of Ketimines with Malononitriles Using Single Cinchona Alkaloid Sulfonamide Catalysts. Advanced Synthesis and Catalysis, 2022, 364, 781-786.	4.3	18
57	Enantioselective Multicatalytic Synthesis of α-Benzyl-β-hydroxyindan-1-ones. Synthesis, 2013, 45, 2134-2136.	2.3	17
58	Enantioselective Vinylogous Mannich Reaction of Acyclic Vinylketene Silyl Acetals with Acyclic Ketimines. Advanced Synthesis and Catalysis, 2021, 363, 4544-4548.	4.3	16
59	Formal total synthesis of ottelione using iridium-catalyzed oxidative desymmetrization. Tetrahedron, 2010, 66, 7562-7568.	1.9	15
60	Oxo-carboxylato-molybdenum(vi) complexes possessing dithiolene ligands related to the active site of type II DMSOR family molybdoenzymes. Dalton Transactions, 2013, 42, 15927.	3.3	15
61	A Model for the Active-Site Formation Process in DMSO Reductase Family Molybdenum Enzymes Involving Oxidoâ~'Alcoholato and Oxidoâ~'Thiolato Molybdenum(VI) Core Structures. Inorganic Chemistry, 2016, 55, 1542-1550.	4.0	15
62	Thermoelectric Properties of Epitaxial β-FeSi2 Thin Films on Si(111) and Approach for Their Enhancement. Journal of Electronic Materials, 2017, 46, 3235-3241.	2.2	15
63	Design and Synthesis of 1,2-Deoxy-pyranose Derivatives of Spliceostatin A toward Prostate Cancer Treatment. ACS Medicinal Chemistry Letters, 2020, 11, 1310-1315.	2.8	14
64	<i>cis</i> -1,2-Aminohydroxylation of Alkenes Involving a Catalytic Cycle of Osmium(III) and Osmium(V) Centers: Os ^V (O)(NHTs) Active Oxidant with a Macrocyclic Tetradentate Ligand. Inorganic Chemistry, 2015, 54, 7073-7082.	4.0	13
65	Oneâ€Pot Olefin Isomerization/Aliphatic Enamine Ringâ€Closing Metathesis/Oxidation/1,3â€Dipolar Cycloaddition for the Synthesis of Isoindolo[1,2â€ <i>a</i>]isoquinolines. Advanced Synthesis and Catalysis, 2015, 357, 4055-4062.	4.3	12
66	Quinoidal Oligothiophenes Having Full Benzene Annelation: Synthesis, Properties, Structures, and Acceptor Application in Organic Photovoltaics. Organic Letters, 2020, 22, 547-551.	4.6	12
67	Asymmetric synthesis of tetrasubstituted cyclic amines <i>via</i> aza-Henry reaction using cinchona alkaloid sulfonamide/zinc(<scp>ii</scp>) catalysts. Chemical Communications, 2022, 58, 1318-1321.	4.1	12
68	pH Stability and Antioxidant Power of CycloDOPA and Its Derivatives. Molecules, 2018, 23, 1943.	3.8	11
69	Reusable Immobilized Iron(II) Nanoparticle Precatalysts for Ligand-Free Kumada Coupling. ACS Applied Nano Materials, 2018, 1, 6950-6958.	5.0	10
70	Synthesis of the Hemiacetal Pheromone of the Spined Citrus Bug Biprorulus bibax Utilizing an Iridium Catalyzed Oxidative Lactonization. Heterocycles, 2006, 69, 457.	0.7	10
71	One-Pot Catalysis Using a Chiral Iridium Complex/BrÃ,nsted Base: Catalytic Asymmetric Synthesis of Catalponol. Organic Letters, 2015, 17, 5176-5179.	4.6	9
72	Impact of Phenyl Groups on Oxygen-bridged V-shaped Organic Semiconductors. Chemistry Letters, 2017, 46, 338-341.	1.3	9

#	Article	IF	CITATIONS
73	Dimethylformamide-stabilised palladium nanoclusters catalysed coupling reactions of aryl halides with hydrosilanes/disilanes. RSC Advances, 2019, 9, 17425-17431.	3.6	9
74	Tiâ ''Pd Alloys as Heterogeneous Catalysts for the Hydrogen Autotransfer Reaction and Catalytic Improvement by Hydrogenation Effects. ChemCatChem, 2019, 11, 2432-2437.	3.7	9
75	Metal-Free Nitrogen-Containing Polyheterocyclic Near-Infrared (NIR) Absorption Dyes: Synthesis, Absorption Properties, and Theoretical Calculation of Substituted 5-Methylisoindolo[2,1- <i>a</i>]quinolines. ACS Omega, 2019, 4, 5064-5075.	3.5	8
76	The Diels–Alder reaction of C60 and cyclopentadiene in mesoporous silica as a reaction medium. Chemical Communications, 2011, 47, 6338.	4.1	7
77	Comprehensive Synthesis of Photoreactive Phenylthiourea Derivatives for the Photoaffinity Labeling. ChemistrySelect, 2017, 2, 160-164.	1.5	7
78	Absorption, Fluorescence, and Two-Photon Excitation Ability of 5-Phenylisolidolo[2,1- <i>a</i>]quinolines. ACS Omega, 2020, 5, 2473-2479.	3.5	7
79	Electron hybridization and anharmonic thermal vibration effect on structure transition of SrTiO3 at high-pressure and low-temperature. Solid State Communications, 2017, 249, 54-59.	1.9	6
80	Iridium-Catalyzed Intramolecular Cycloisomerization between Functionalized Alkyne with Aryl Vinyl Ether: Synthesis of 2-Vinyl-3-functionalized Methylbenzofurans. Journal of Organic Chemistry, 2020, 85, 10198-10205.	3.2	6
81	Catalytic enantioselective intramolecular Tishchenko reaction of meso-dialdehyde: synthesis of (S)-cedarmycins. RSC Advances, 2021, 11, 11606-11609.	3.6	6
82	Cross β-alkylation of primary alcohols catalysed by DMF-stabilized iridium nanoparticles. Organic and Biomolecular Chemistry, 2021, 19, 1950-1954.	2.8	6
83	Thermoelectric properties of epitaxial β-FeSi ₂ thin films grown on Si(111) substrates with various film qualities. Japanese Journal of Applied Physics, 2017, 56, 05DC04.	1.5	5
84	Oxido-alcoholato/thiolato-molybdenum(VI) complexes with a dithiolene ligand generated by oxygen atom transfer to the molybdenum(IV) complexes. Inorganica Chimica Acta, 2019, 485, 42-48.	2.4	5
85	Cross β-arylmethylation of alcohols catalysed by recyclable Ti–Pd alloys not requiring pre-activation. Chemical Communications, 2021, 57, 5139-5142.	4.1	5
86	One-pot reactions of bicyclic zinc enolate generated from Ni-catalyzed reductive cyclization to furnish octahydro-4,7-ethanobenzofuran-9-one derivatives. Tetrahedron Letters, 2019, 60, 151148.	1.4	4
87	Iridium-Catalyzed Isomerization/Cycloisomerization/Aromatization of <i>N</i> -Allyl- <i>N</i> -sulfonyl- <i>o</i> -(λ ¹ -silylethynyl)aniline Derivatives to Give Substituted Indole Derivatives. Organic Letters, 2021, 23, 4284-4288.	4.6	4
88	Carbon–Carbon Bond Formation between <i>N</i> -Heterocyclic Carbene Ligand on Ruthenium Carbene Catalysts and 1,4-Naphthoquinone via Intramolecular Carbon(sp ³)–Hydrogen Bond Activation. Organometallics, 2021, 40, 2901-2908.	2.3	4
89	Iriomoteolides-14a and 14b, New Cytotoxic 15-Membered Macrolides from Marine Dinoflagellate <i>Amphidinium</i> Species. Chemical and Pharmaceutical Bulletin, 2020, 68, 864-867.	1.3	4
90	Synthesis of [6]helicene-based sulfonic acid, sulfonamide, and disulfonimides. Tetrahedron Letters, 2018, 59, 2450-2453.	1.4	3

#	Article	IF	CITATIONS
91	Direct synthesis of dialkylarylvinylsilane derivatives: metathesis of dialkylaryl-iso-propenylsilane and its application to tetracyclic silacycle dye synthesis. Chemical Communications, 2019, 55, 14070-14073.	4.1	3
92	Bulk Ti–Pd Alloys as Easily Recyclable and Preactivation-Free Heterogeneous Catalysts for Cross-Coupling Reactions. Bulletin of the Chemical Society of Japan, 2019, 92, 710-715.	3.2	3
93	Product selective reaction controlled by the combination of palladium nanoparticles, continuous microwave irradiation, and a co-existing solid; ligand-free Buchwald–Hartwig amination vs. aryne amination. Green Chemistry, 0, , .	9.0	3
94	Chiral Protonated Amino Acid Ester Discrimination by Acyclic Chiral Hosts Including D-Mannofuranose Moieties in Fast Atom Bombardment Mass Spectrometry Coupled with the Enantiomer Labeled Guest Method. Journal of the Mass Spectrometry Society of Japan, 2009, 57, 331-339.	0.1	3
95	Optimization of sucrose 1'-position modification with 3-(trifluoromethyl)diazirinyl benzylbromide derivatives for photoaffinity labeling. Arkivoc, 2019, 2018, 58-65.	0.5	2
96	Effect of Water in Fabricating Copper Nanoparticles onto Reduced Graphene Oxide Nanosheets: Application in Catalytic Ullmann-Coupling Reactions. Bulletin of the Chemical Society of Japan, 2020, 93, 1164-1170.	3.2	2
97	Diastereoselective direct amidation/aza-Michael cascade reaction to synthesize cis-1,3-disubstituted isoindolines. Tetrahedron Letters, 2020, 61, 152122.	1.4	2
98	N,N-Dimethylformamide-stabilised palladium nanoparticles combined with bathophenanthroline as catalyst for transfer vinylation of alcohols from vinyl ether. Organic and Biomolecular Chemistry, 2021, 19, 3384-3388.	2.8	2
99	Amphirionins-3 and -6, New Polyketides from the Cultured Marine Dinoflagellate Amphidinium Species. Heterocycles, 2020, 100, 1678.	0.7	2
100	<i>N,N</i> â€Dimethylformamideâ€protected Fe ₂ O ₃ Combined with Pt Nanoparticles: Characterization and Catalysis in Alkene Hydrosilylation. ChemCatChem, 2022, 14, .	3.7	2
101	Using α- and β-Epimerizations of <i>cis</i> -2,3-Bis(hydroxymethyl)-γ-butyrolactone for the Synthesis of Both Enantiomers of Enterolactone. Journal of Organic Chemistry, 2022, , .	3.2	2
102	Application to Electroluminescence Devices with Dimethylformamide-Stabilized Niobium Oxide Nanoparticles. ACS Applied Nano Materials, 2022, 5, 7658-7663.	5.0	2
103	<i>N</i> , <i>N</i> -Dimethylformamide-stabilized ruthenium nanoparticle catalyst for β-alkylated dimer alcohol formation <i>via</i> Guerbet reaction of primary alcohols. RSC Advances, 2022, 12, 16599-16603.	3.6	2
104	Readily Available [2.2.2]-Bicyclooctadienes as New Chiral Ligands for Ir(I): Catalytic, Kinetic Resolution of Allyl Carbonates ChemInform, 2004, 35, no.	0.0	1
105	Synthesis, Electronic, and Crystal Structures of Methoxycarbonyl-substituted 2,5-Di(1,3-dithiol-2-ylidene)-1,3-dithiolane-4-thione Derivatives. Chemistry Letters, 2014, 43, 1224-1226.	1.3	1
106	Syntheses, Crystal Structures and Solid-State Absorption Spectra of <i>n</i> -Propylsulfanyl- and Isopropylsulfanyl-Substituted 2,5-Di(1,3-dithiol-2-ylidene)-1,3-dithiolane-4-thione Derivatives with Methoxycarbonyl Groups. Bulletin of the Chemical Society of Japan, 2017, 90, 306-311.	3.2	1
107	Pyrolysis of Ironâ€Containing Polyanilines under Micropore Generation Control: Electrocatalytic Performance in the Oxygen Reduction Reaction. ChemPlusChem, 2020, 85, 1964-1967.	2.8	1
108	Catalytic and Diastereoselective Cascade Reaction for the Preparation of cis-1,3-Disubstituted Isoindoline-Aminal Hybrid Compounds. Heterocycles, 2021, 102, 723.	0.7	1

#	Article	IF	CITATIONS
109	Synthesis of TFA-protected α-Amino Acid Chloride via a Vilsmeier Reagent for Friedel–Crafts Acylation. Letters in Organic Chemistry, 2020, 17, 645-653.	0.5	1
110	TFA-Protected α-Amino Acid N-Hydroxysuccinimide Ester: Application for Inter- and Intramolecular Acylation. Heterocycles, 2018, 97, 877.	0.7	1
111	Synthesis of Deuterated CycloDOPA with Hydrogen/Deuterium Exchange. Heterocycles, 2019, 99, 404.	0.7	1
112	Measurement of Diffusion Profile of Boron in α Iron by Secondary-ion Mass Spectrometry and Determination of Its Diffusion Coefficient. Tetsu-To-Hagane/Journal of the Iron and Steel Institute of Japan, 2020, 106, 302-309.	0.4	1
113	Double isomerization/cycloisomerization/aromatization of 1-(allyloxy)-2-(cyclopropylmethyl)benzenes to give 2-ethyl-3-isopropylbenzofurans using a multitasking single rhodium catalyst. Chemical Communications, 2022, 58, 415-418.	4.1	1
114	Catalytic Asymmetric Oxidative Lactonizations of meso-Diols Using a Chiral Iridium Complex ChemInform, 2003, 34, no.	0.0	0
115	Iridium-Catalyzed Oppenauer Oxidations of Primary Alcohols Using Acetone or 2-Butanone as Oxidant ChemInform, 2003, 34, no.	0.0	Ο
116	Iridium-Catalyzed Oxidative Lactonization and Intramolecular Tishchenko Reaction of δ-Ketoaldehydes for the Synthesis of Isocoumarins and 3,4-Dihydroisocoumarins ChemInform, 2005, 36, no.	0.0	0
117	Iridium-Catalyzed Oxidative Dimerization of Primary Alcohols to Esters Using 2-Butanone as an Oxidant ChemInform, 2005, 36, no.	0.0	Ο
118	Tishchenko Reaction Using an Iridium-Ligand Bifunctional Catalyst ChemInform, 2005, 36, no.	0.0	0
119	Diastereo―and Enantioselective Direct Catalytic Aldol Reaction of 2â€Hydroxyacetophenones with Aldehydes Promoted by a Heteropolymetallic Complex: Catalytic Asymmetric Synthesis of antiâ€1,2â€Diols ChemInform, 2002, 33, 80-80.	0.0	0
120	Mild and Chemoselective Synthesis of Lactones from Diols Using a Novel Metal—Ligand Bifunctional Catalyst ChemInform, 2002, 33, 106-106.	0.0	0
121	Synthesis of (Trifluoromethyldiazirinyl)phenylboronic Acid Derivatives for Photoaffinity Labeling. Heterocycles, 2021, 103, 392.	0.7	Ο
122	Recent Advances in the Desymmetrization of meso-Diols. Yuki Gosei Kagaku Kyokaishi/Journal of Synthetic Organic Chemistry, 2018, 76, 810-819.	0.1	0
123	Synthesis of 6,7-benzene-fused tropane derivatives from isoindoline-aminal hybrid compound. Tetrahedron Letters, 2022, 95, 153724.	1.4	0
124	Novel Synthesis and Properties of Optically Pure N-Trifluoroacetylphenylglycine Hydroxysuccinimide Ester. Heterocycles, 2022, 105, 406.	0.7	0