Laurence Cocquerel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3418518/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Processing and Subcellular Localization of the Hepatitis E Virus Replicase: Identification of Candidate Viral Factories. Frontiers in Microbiology, 2022, 13, 828636.	3.5	16
2	In silico and in vitro screening of licensed antimalarial drugs for repurposing as inhibitors of hepatitis E virus. In Silico Pharmacology, 2021, 9, 35.	3.3	10
3	New insights into the ORF2 capsid protein, a key player of the hepatitis E virus lifecycle. Scientific Reports, 2019, 9, 6243.	3.3	44
4	Hepatitis E Virus (HEV) Open Reading Frame 2 Antigen Kinetics in Human-Liver Chimeric Mice and Its Impact on HEV Diagnosis. Journal of Infectious Diseases, 2019, 220, 811-819.	4.0	20
5	Identification of Piperazinylbenzenesulfonamides as New Inhibitors of Claudin-1 Trafficking and Hepatitis C Virus Entry. Journal of Virology, 2018, 92, .	3.4	12
6	Hepatitis E Virus Lifecycle and Identification of 3 Forms of the ORF2 Capsid Protein. Gastroenterology, 2018, 154, 211-223.e8.	1.3	145
7	Identification of GBF1 as a cellular factor required for hepatitis E virus RNA replication. Cellular Microbiology, 2018, 20, e12804.	2.1	28
8	Investigation of the role of GBF1 in the replication of positive-sense single-stranded RNA viruses. Journal of General Virology, 2018, 99, 1086-1096.	2.9	18
9	Study of hepatitis E virus infection of genotype 1 and 3 in mice with humanised liver. Gut, 2017, 66, 920-929.	12.1	113
10	Identification of a New Benzimidazole Derivative as an Antiviral against Hepatitis C Virus. Journal of Virology, 2016, 90, 8422-8434.	3.4	33
11	Claudin-6 and Occludin Natural Variants Found in a Patient Highly Exposed but Not Infected with Hepatitis C Virus (HCV) Do Not Confer HCV Resistance In Vitro. PLoS ONE, 2015, 10, e0142539.	2.5	8
12	SRFBP1, an Additional Player in HCV Entry. Trends in Microbiology, 2015, 23, 590-593.	7.7	1
13	New Insights into the Understanding of Hepatitis C Virus Entry and Cell-to-Cell Transmission by Using the Ionophore Monensin A. Journal of Virology, 2015, 89, 8346-8364.	3.4	18
14	CD81 and Hepatitis C Virus (HCV) Infection. Viruses, 2014, 6, 535-572.	3.3	93
15	Identification of a Novel Drug Lead That Inhibits HCV Infection and Cell-to-Cell Transmission by Targeting the HCV E2 Glycoprotein. PLoS ONE, 2014, 9, e111333.	2.5	18
16	EWI-2wint promotes CD81 clustering that abrogates Hepatitis C Virus entry. Cellular Microbiology, 2013, 15, 1234-1252.	2.1	39
17	The antimalarial ferroquine is an inhibitor of hepatitis C virus. Hepatology, 2013, 58, 86-97.	7.3	43

18 The Role of CD81 in HCV and Plasmodium Infection. , 2013, , 345-386.

0

LAURENCE COCQUEREL

#	Article	IF	CITATIONS
19	Structural Basis of Ligand Interactions of the Large Extracellular Domain of Tetraspanin CD81. Journal of Virology, 2012, 86, 9606-9616.	3.4	42
20	Hepatocyte-derived cultured cells with unusual cytoplasmic keratin-rich spheroid bodies. Experimental Cell Research, 2011, 317, 2683-2694.	2.6	1
21	Hepatitis C virus entry into the hepatocyte. Open Life Sciences, 2011, 6, 933-945.	1.4	9
22	Interacting Regions of CD81 and Two of Its Partners, EWI-2 and EWI-2wint, and Their Effect on Hepatitis C Virus Infection. Journal of Biological Chemistry, 2011, 286, 13954-13965.	3.4	51
23	The association of CD81 with tetraspanin-enriched microdomains is not essential for Hepatitis C virus entry. BMC Microbiology, 2009, 9, 111.	3.3	36
24	The Ig Domain Protein CD9P-1 Down-regulates CD81 Ability to Support Plasmodium yoelii Infection. Journal of Biological Chemistry, 2009, 284, 31572-31578.	3.4	26
25	Ceramide enrichment of the plasma membrane induces CD81 internalization and inhibits hepatitis C virus entry. Cellular Microbiology, 2008, 10, 606-617.	2.1	74
26	Early steps of the hepatitis C virus life cycle. Cellular Microbiology, 2008, 10, 821-827.	2.1	115
27	The CD81 Partner EWI-2wint Inhibits Hepatitis C Virus Entry. PLoS ONE, 2008, 3, e1866.	2.5	100
28	Robust production of infectious viral particles in Huh-7 cells by introducing mutations in hepatitis C virus structural proteins. Journal of General Virology, 2007, 88, 2495-2503.	2.9	133
29	Hepatitis C virus entry: potential receptors and their biological functions. Journal of General Virology, 2006, 87, 1075-1084.	2.9	164
30	Kinetics of HCV envelope proteins' interaction with CD81 large extracellular loop. Biochemical and Biophysical Research Communications, 2005, 328, 1091-1100.	2.1	22
31	Regulation of Hepatitis C Virus Polyprotein Processing by Signal Peptidase Involves Structural Determinants at the p7 Sequence Junctions. Journal of Biological Chemistry, 2004, 279, 41384-41392.	3.4	58
32	Characterization of Functional Hepatitis C Virus Envelope Glycoproteins. Journal of Virology, 2004, 78, 2994-3002.	3.4	198
33	CD81-Dependent Binding of Hepatitis C Virus E1E2 Heterodimers. Journal of Virology, 2003, 77, 10677-10683.	3.4	86
34	Recognition of Native Hepatitis C Virus E1E2 Heterodimers by a Human Monoclonal Antibody. Journal of Virology, 2003, 77, 1604-1609.	3.4	42
35	Glycosylation of the hepatitis C virus envelope protein E1 occurs posttranslationally in a mannosylphosphoryldolichol-deficient CHO mutant cell line. Glycobiology, 2002, 12, 95-101.	2.5	21
36	Subcellular Localization and Topology of the p7 Polypeptide of Hepatitis C Virus. Journal of Virology, 2002, 76, 3720-3730.	3.4	180

LAURENCE COCQUEREL

#	Article	IF	CITATIONS
37	Topological changes in the transmembrane domains of hepatitis C virus envelope glycoproteins. EMBO Journal, 2002, 21, 2893-2902.	7.8	106
38	Biogenesis of hepatitis C virus envelope glycoproteins. Journal of General Virology, 2001, 82, 2589-2595.	2.9	132
39	Coexpression of hepatitis C virus envelope proteins E1 and E2 in cis improves the stability of membrane insertion of E2. Journal of General Virology, 2001, 82, 1629-1635.	2.9	41
40	The Transmembrane Domains of Hepatitis C Virus Envelope Glycoproteins E1 and E2 Play a Major Role in Heterodimerization. Journal of Biological Chemistry, 2000, 275, 31428-31437.	3.4	139
41	Glycosylation of the Hepatitis C Virus Envelope Protein E1 Is Dependent on the Presence of a Downstream Sequence on the Viral Polyprotein. Journal of Biological Chemistry, 2000, 275, 30605-30609.	3.4	48
42	Charged Residues in the Transmembrane Domains of Hepatitis C Virus Glycoproteins Play a Major Role in the Processing, Subcellular Localization, and Assembly of These Envelope Proteins. Journal of Virology, 2000, 74, 3623-3633.	3.4	156
43	The Transmembrane Domain of Hepatitis C Virus Glycoprotein E1 Is a Signal for Static Retention in the Endoplasmic Reticulum. Journal of Virology, 1999, 73, 2641-2649.	3.4	142
44	Endoplasmic reticulum retention of hepatitis C virus glycoprotein complex E1E2: A role for the transmembrane domain of E2. Biology of the Cell, 1998, 90, 118-118.	2.0	0
45	Hepatitis C Virus Glycoprotein Complex Localization in the Endoplasmic Reticulum Involves a Determinant for Retention and Not Retrieval. Journal of Biological Chemistry, 1998, 273, 32088-32095.	3.4	133
46	A Retention Signal Necessary and Sufficient for Endoplasmic Reticulum Localization Maps to the Transmembrane Domain of Hepatitis C Virus Glycoprotein E2. Journal of Virology, 1998, 72, 2183-2191.	3.4	226