List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3418272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Solar-driven, highly sustained splitting of seawater into hydrogen and oxygen fuels. Proceedings of the United States of America, 2019, 116, 6624-6629.	7.1	524
2	Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2018, 8, 1703341.	19.5	505
3	Singleâ€Crystalline Ultrathin Co ₃ O ₄ Nanosheets with Massive Vacancy Defects for Enhanced Electrocatalysis. Advanced Energy Materials, 2018, 8, 1701694.	19.5	451
4	Boosting oxygen evolution of single-atomic ruthenium through electronic coupling with cobalt-iron layered double hydroxides. Nature Communications, 2019, 10, 1711.	12.8	446
5	Ternary NiCoP nanosheet arrays: An excellent bifunctional catalyst for alkaline overall water splitting. Nano Research, 2016, 9, 2251-2259.	10.4	342
6	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie - International Edition, 2019, 58, 736-740.	13.8	335
7	Layered double hydroxide-based electrocatalysts for the oxygen evolution reaction: identification and tailoring of active sites, and superaerophobic nanoarray electrode assembly. Chemical Society Reviews, 2021, 50, 8790-8817.	38.1	331
8	Bright quantum dots emitting at â^¼1,600 nm in the NIR-IIb window for deep tissue fluorescence imaging. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 6590-6595.	7.1	310
9	A general route <i>via</i> formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	30.8	290
10	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie - International Edition, 2018, 57, 9392-9396.	13.8	284
11	NiCoFeâ€Layered Double Hydroxides/Nâ€Doped Graphene Oxide Array Colloid Composite as an Efficient Bifunctional Catalyst for Oxygen Electrocatalytic Reactions. Advanced Energy Materials, 2018, 8, 1701905.	19.5	276
12	Singleâ€Crystalline Ultrathin Nickel Nanosheets Array from Inâ€Situ Topotactic Reduction for Active and Stable Electrocatalysis. Angewandte Chemie - International Edition, 2016, 55, 693-697.	13.8	225
13	Understanding the incorporating effect of Co2+/Co3+ in NiFe-layered double hydroxide for electrocatalytic oxygen evolution reaction. Journal of Catalysis, 2018, 358, 100-107.	6.2	194
14	Superaerophobic Ultrathin Ni–Mo Alloy Nanosheet Array from In Situ Topotactic Reduction for Hydrogen Evolution Reaction. Small, 2017, 13, 1701648.	10.0	190
15	A safe and non-flammable sodium metal battery based on an ionic liquid electrolyte. Nature Communications, 2019, 10, 3302.	12.8	173
16	Electroreduction of CO ₂ to Formate on a Copper-Based Electrocatalyst at High Pressures with High Energy Conversion Efficiency. Journal of the American Chemical Society, 2020, 142, 7276-7282.	13.7	165
17	Microwave chemistry, recent advancements, and eco-friendly microwave-assisted synthesis of nanoarchitectures and their applications: a review. Materials Today Nano, 2020, 11, 100076.	4.6	154
18	Phosphorus oxoanion-intercalated layered double hydroxides for high-performance oxygen evolution. Nano Research, 2017, 10, 1732-1739.	10.4	139

#	Article	IF	CITATIONS
19	Effects of redox-active interlayer anions on the oxygen evolution reactivity of NiFe-layered double hydroxide nanosheets. Nano Research, 2018, 11, 1358-1368.	10.4	134
20	Layered double hydroxides with atomic-scale defects for superior electrocatalysis. Nano Research, 2018, 11, 4524-4534.	10.4	130
21	High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes. Small, 2016, 12, 2492-2498.	10.0	113
22	Constructing Earthâ€abundant 3D Nanoarrays for Efficient Overall Water Splitting – A Review. ChemCatChem, 2019, 11, 1550-1575.	3.7	108
23	Selective and High Current CO ₂ Electro-Reduction to Multicarbon Products in Near-Neutral KCl Electrolytes. Journal of the American Chemical Society, 2021, 143, 3245-3255.	13.7	108
24	Single Crystalline Ultrathin Nickel–Cobalt Alloy Nanosheets Array for Direct Hydrazine Fuel Cells. Advanced Science, 2017, 4, 1600179.	11.2	104
25	Unconventional Carbon: Alkaline Dehalogenation of Polymers Yields Nâ€Đoped Carbon Electrode for Highâ€Performance Capacitive Energy Storage. Advanced Functional Materials, 2016, 26, 3340-3348.	14.9	95
26	Recent Advances in Nonâ€Precious Metalâ€Based Electrodes for Alkaline Water Electrolysis. ChemNanoMat, 2020, 6, 336-355.	2.8	92
27	Introducing Fe ²⁺ into Nickel–Iron Layered Double Hydroxide: Local Structure Modulated Water Oxidation Activity. Angewandte Chemie, 2018, 130, 9536-9540.	2.0	86
28	Selectivity regulation of CO2 electroreduction through contact interface engineering on superwetting Cu nanoarray electrodes. Nano Research, 2019, 12, 345-349.	10.4	80
29	Characterization of exosomes derived from ovarian cancer cells and normal ovarian epithelial cells by nanoparticle tracking analysis. Tumor Biology, 2016, 37, 4213-4221.	1.8	74
30	ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. Nano Energy, 2016, 26, 241-247.	16.0	72
31	Amorphous Rutheniumâ€5ulfide with Isolated Catalytic Sites for Pt‣ike Electrocatalytic Hydrogen Production Over Whole pH Range. Small, 2019, 15, e1904043.	10.0	71
32	An Artificial Electrode/Electrolyte Interface for CO ₂ Electroreduction by Cation Surfactant Selfâ€Assembly. Angewandte Chemie - International Edition, 2020, 59, 19095-19101.	13.8	71
33	Three-dimensional porous superaerophobic nickel nanoflower electrodes for high-performance hydrazine oxidation. Nano Research, 2015, 8, 3365-3371.	10.4	70
34	Ultrathin Dendritic Pt ₃ Cu Triangular Pyramid Caps with Enhanced Electrocatalytic Activity. ACS Applied Materials & Interfaces, 2014, 6, 17748-17752.	8.0	69
35	Ultrathin branched PtFe and PtRuFe nanodendrites with enhanced electrocatalytic activity. Journal of Materials Chemistry A, 2015, 3, 1182-1187.	10.3	65
36	Single-crystalline dendritic bimetallic and multimetallic nanocubes. Chemical Science, 2015, 6, 7122-7129.	7.4	61

#	Article	IF	CITATIONS
37	Highly active oxygen evolution integrated with efficient CO ₂ to CO electroreduction. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 23915-23922.	7.1	58
38	Superior anti-CO poisoning capability: Au-decorated PtFe nanocatalysts for high-performance methanol oxidation. Chemical Communications, 2016, 52, 3903-3906.	4.1	57
39	NiFe Hydroxide Lattice Tensile Strain: Enhancement of Adsorption of Oxygenated Intermediates for Efficient Water Oxidation Catalysis. Angewandte Chemie, 2019, 131, 746-750.	2.0	55
40	Breaking the symmetry: Gradient in NiFe layered double hydroxide nanoarrays for efficient oxygen evolution. Nano Energy, 2019, 60, 661-666.	16.0	52
41	Development of hydrophilicity gradient ultracentrifugation method for photoluminescence investigation of separated non-sedimental carbon dots. Nano Research, 2015, 8, 2810-2821.	10.4	49
42	Amorphous Co–Mo–S ultrathin films with low-temperature sulfurization as high-performance electrocatalysts for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2016, 4, 13731-13735.	10.3	48
43	Hierarchical cobalt oxide@Nickel-vanadium layer double hydroxide core/shell nanowire arrays with enhanced areal specific capacity for nickel–zinc batteries. Journal of Power Sources, 2019, 436, 226867.	7.8	48
44	An Artificial Electrode/Electrolyte Interface for CO ₂ Electroreduction by Cation Surfactant Selfâ€Assembly. Angewandte Chemie, 2020, 132, 19257-19263.	2.0	45
45	Janus electrode with simultaneous management on gas and liquid transport for boosting oxygen reduction reaction. Nano Research, 2019, 12, 177-182.	10.4	43
46	Superaerophilic copper nanowires for efficient and switchable CO ₂ electroreduction. Nanoscale Horizons, 2019, 4, 490-494.	8.0	39
47	Topotactic reduction of layered double hydroxides for atomically thick two-dimensional non-noble-metal alloy. Nano Research, 2017, 10, 2988-2997.	10.4	38
48	Boosting oxygen reaction activity by coupling sulfides for high-performance rechargeable metal–air battery. Journal of Materials Chemistry A, 2018, 6, 21162-21166.	10.3	38
49	Experimental and Mathematical Modeling Studies of the Separation of Zinc Blende and Wurtzite Phases of CdS Nanorods by Density Gradient Ultracentrifugation. ACS Nano, 2011, 5, 3242-3249.	14.6	35
50	Morphology effects of bismuth catalysts on electroreduction of carbon dioxide into formate. Electrochimica Acta, 2019, 305, 388-393.	5.2	34
51	Hierarchically porous indium oxide nanolamellas with ten-parts-per-billion-level formaldehyde-sensing performance. Sensors and Actuators B: Chemical, 2015, 206, 714-720.	7.8	31
52	An electrodeposition approach to metal/metal oxide heterostructures for active hydrogen evolution catalysts in near-neutral electrolytes. Nano Research, 2019, 12, 1431-1435.	10.4	31
53	Rational design of graphene oxide and its hollow CoO composite for superior oxygen reduction reaction. Science China Materials, 2015, 58, 534-542.	6.3	30
54	Antibuoyancy and Unidirectional Gas Evolution by Janus Electrodes with Asymmetric Wettability. ACS Applied Materials & Interfaces, 2020, 12, 23627-23634.	8.0	29

#	Article	IF	CITATIONS
55	Enhancing oxygen evolution reaction by cationic surfactants. Nano Research, 2019, 12, 2302-2306.	10.4	28
56	Common-Ion Effect Triggered Highly Sustained Seawater Electrolysis with Additional NaCl Production. Research, 2020, 2020, 2872141.	5.7	28
57	Iridium in Tungsten Trioxide Matrix as an Efficient Biâ€Functional Electrocatalyst for Overall Water Splitting in Acidic Media. Small, 2021, 17, e2102078.	10.0	28
58	Rare-earth-regulated Ru-O interaction within the pyrochlore ruthenate for electrocatalytic oxygen evolution in acidic media. Science China Materials, 2021, 64, 1653-1661.	6.3	27
59	Probing the seeded protocol for high-concentration preparation of silver nanowires. Nano Research, 2016, 9, 1532-1542.	10.4	25
60	Synthesis Mechanism Study of Layered Double Hydroxides Based on Nanoseparation. Inorganic Chemistry, 2013, 52, 8694-8698.	4.0	24
61	Engineering Interfacial Aerophilicity of Nickel-Embedded Nitrogen-Doped CNTs for Electrochemical CO ₂ Reduction. ACS Applied Energy Materials, 2019, 2, 3991-3998.	5.1	23
62	A multiphase nickel iron sulfide hybrid electrode for highly active oxygen evolution. Science China Materials, 2020, 63, 356-363.	6.3	23
63	Mesoporous assembled SnO2 nanospheres: Controlled synthesis, structural analysis and ethanol sensing investigation. Sensors and Actuators B: Chemical, 2013, 181, 629-636.	7.8	21
64	Ultrashort Single-Walled Carbon Nanotubes: Density Gradient Separation, Optical Property, and Mathematical Modeling Study. Journal of Physical Chemistry C, 2012, 116, 24770-24776.	3.1	18
65	Synthesis and performance optimization of ultrathin two-dimensional CoFePt alloy materials <i>via in situ</i> topotactic conversion for the hydrogen evolution reaction. Journal of Materials Chemistry A, 2019, 7, 9517-9522.	10.3	17
66	Understanding the "Tailoring Synthesis―of CdS Nanorods by O ₂ . Inorganic Chemistry, 2012, 51, 1302-1308.	4.0	16
67	Synthesis and Properties of Stable Sub-2-nm-Thick Aluminum Nanosheets: Oxygen Passivation and Two-Photon Luminescence. CheM, 2020, 6, 448-459.	11.7	15
68	Highly controlled bifunctional Ag@rubrene core–shell nanostructures: surface-enhanced fluorescence and Raman scattering. Journal of Materials Chemistry C, 2013, 1, 4146.	5.5	12
69	Controllable Assembly and Separation of Colloidal Nanoparticles through a Oneâ€Tube Synthesis Based on Density Gradient Centrifugation. Chemistry - A European Journal, 2015, 21, 7211-7216.	3.3	11
70	Universal Parameter Optimization of Density Gradient Ultracentrifugation Using CdSe Nanoparticles as Tracing Agents. Analytical Chemistry, 2016, 88, 8495-8501.	6.5	11
71	Solvothermal synthesis of FeCo nanoparticles for magneto-controllable biocatalysis. RSC Advances, 2014, 4, 11136-11141.	3.6	9
72	Solvent switching and purification of colloidal nanoparticles through water/oil Interfaces within a density gradient. Nano Research, 2014, 7, 1670-1679.	10.4	8

#	Article	IF	CITATIONS
73	3D printed hierarchical spinel monolithic catalysts for highly efficient semi-hydrogenation of acetylene. Nano Research, 2022, 15, 6010-6018.	10.4	8
74	Separation of colloidal two dimensional materials by density gradient ultracentrifugation. Journal of Solid State Chemistry, 2015, 224, 120-126.	2.9	7
75	Understanding of Dynamic Contacting Behaviors of Underwater Gas Bubbles on Solid Surfaces. Langmuir, 2020, 36, 11422-11428.	3.5	7
76	Zn Doped NiMn-Layered Double Hydroxide for High Performance Ni–Zn Battery. Journal of the Electrochemical Society, 2020, 167, 160550.	2.9	4
77	MoSx microgrid electrodes with geometric jumping effect for enhancing hydrogen evolution efficiency. Science China Materials, 2021, 64, 892-898.	6.3	3
78	First-principles study of the oxygen evolution reaction on Ni3Fe-layered double hydroxides surfaces with varying sulfur coverage. Molecular Catalysis, 2022, 519, 112116.	2.0	1
79	Hydrogen Production: Amorphous Rutheniumâ€Sulfide with Isolated Catalytic Sites for Ptâ€Like Electrocatalytic Hydrogen Production Over Whole pH Range (Small 46/2019). Small, 2019, 15, 1970249.	10.0	0