Stephen S Tooth

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/341794/publications.pdf

Version: 2024-02-01

94 papers

4,014 citations

33 h-index 60 g-index

101 all docs

101 docs citations

times ranked

101

3011 citing authors

#	Article	IF	Citations
1	Process, form and change in dryland rivers: a review of recent research. Earth-Science Reviews, 2000, 51, 67-107.	9.1	413
2	The role of vegetation in the formation of anabranching channels in an ephemeral river, Northern plains, arid central Australia. Hydrological Processes, 2000, 14, 3099-3117.	2.6	199
3	The geomorphology of the Anthropocene: emergence, status and implications. Earth Surface Processes and Landforms, 2017, 42, 71-90.	2.5	183
4	Wetlands in drylands: geomorphological and sedimentological characteristics, with emphasis on examples from southern Africa. Progress in Physical Geography, 2007, 31, 3-41.	3.2	154
5	Assessing the reproducibility and accuracy of optical dating of fluvial deposits. Quaternary Geochronology, 2006, 1, 109-120.	1.4	130
6	Mapping of a major paleodrainage system in eastern Libya using orbital imaging radar: The Kufrah River. Earth and Planetary Science Letters, 2009, 277, 327-333.	4.4	124
7	Downstream changes in dryland river channels: the Northern Plains of arid central Australia. Geomorphology, 2000, 34, 33-54.	2.6	119
8	Anabranching rivers on the Northern Plains of arid central Australia. Geomorphology, 1999, 29, 211-233.	2.6	112
9	Stability of the pool-riffle sequence in changing river channels. River Research and Applications, 1994, 9, 35-43.	0.8	103
10	Geological controls on the formation of alluvial meanders and floodplain wetlands: the example of the Klip River, eastern Free State, South Africa. Earth Surface Processes and Landforms, 2002, 27, 797-815.	2.5	97
11	Splay Formation Along the Lower Reaches of Ephemeral Rivers on the Northern Plains of Arid Central Australia. Journal of Sedimentary Research, 2005, 75, 636-649.	1.6	95
12	Comparison of paired quartz OSL and feldspar post-IR IRSL dose distributions in poorly bleached fluvial sediments from South Africa. Quaternary Geochronology, 2015, 30, 233-238.	1.4	92
13	Anabranching in mixed bedrock-alluvial rivers: the example of the Orange River above Augrabies Falls, Northern Cape Province, South Africa. Geomorphology, 2004, 57, 235-262.	2.6	88
14	EQUILIBRIUM AND NONEQUILIBRIUM CONDITIONS IN DRYLAND RIVERS. Physical Geography, 2000, 21, 183-211.	1.4	84
15	Geological controls on alluvial river behaviour: a comparative study of three rivers on the South African Highveld. Journal of African Earth Sciences, 2004, 38, 79-97.	2.0	78
16	The Anthropocene: is there a geomorphological case?. Earth Surface Processes and Landforms, 2013, 38, 431-434.	2.5	78
17	Riparian vegetation and the late Holocene development of an anabranching river: Magela Creek, northern Australia. Bulletin of the Geological Society of America, 2008, 120, 1021-1035.	3.3	7 5
18	Forms and processes of two highly contrasting rivers in arid central Australia, and the implications for channel-pattern discrimination and prediction. Bulletin of the Geological Society of America, 2004, 116, 802.	3.3	71

#	Article	IF	CITATIONS
19	Optical dating of a scroll-bar sequence on the Klip River, South Africa, to derive the lateral migration rate of a meander bend. Holocene, 2005, 15, 802-811.	1.7	71
20	Chronology and controls of avulsion along a mixed bedrock-alluvial river. Bulletin of the Geological Society of America, 2007, 119, 452-461.	3.3	66
21	Controls on the transition from meandering to straight channels in the wetlands of the Okavango Delta, Botswana. Earth Surface Processes and Landforms, 2004, 29, 1627-1649.	2.5	65
22	Late Quaternary floodplain reworking and the preservation of alluvial sedimentary archives in unconfined and confined river valleys in the eastern interior of South Africa. Geomorphology, 2013, 185, 54-66.	2.6	60
23	Spatial distribution of coarse woody debris dams in the Lymington Basin, Hampshire, UK. Geomorphology, 1993, 6, 207-224.	2.6	52
24	Holocene flooding and river development in a Mediterranean steepland catchment: The Anapodaris Gorge, south central Crete, Greece. Global and Planetary Change, 2010, 70, 35-52.	3.5	52
25	New investigations at Kalambo Falls, Zambia: Luminescence chronology, site formation, and archaeological significance. Journal of Human Evolution, 2015, 85, 111-125.	2.6	52
26	Late Quaternary climatic changes revealed by luminescence dating, mineral magnetism and diffuse reflectance spectroscopy of river terrace palaeosols: a new form of geoproxy data for the southern African interior. Quaternary Science Reviews, 2014, 95, 43-59.	3.0	49
27	Controls On the Genesis, Sedimentary Architecture, and Preservation Potential of Dryland Alluvial Successions In Stable Continental Interiors: Insights from the Incising Modder River, South Africa. Journal of Sedimentary Research, 2013, 83, 541-561.	1.6	43
28	Theoretical modeling of stream potholes based upon empirical observations from the Orange River, Republic of South Africa. Geomorphology, 2006, 82, 160-176.	2.6	40
29	Virtual globes: a catalyst for the re-enchantment of geomorphology?. Earth Surface Processes and Landforms, 2006, 31, 1192-1194.	2.5	40
30	Geomorphology and Sediment Regimes of Intermittent Rivers and Ephemeral Streams., 2017,, 21-49.		38
31	The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?. Geomorphology, 2018, 305, 33-48.	2.6	38
32	Product vs. process? The role of geomorphology in wetland characterization. Science of the Total Environment, 2019, 663, 980-991.	8.0	36
33	A comparison of mud- and sand-dominated meanders in a downstream coarsening reach of the mixed bedrock-alluvial Klip River, eastern Free State, South Africa. Sedimentary Geology, 2006, 190, 213-226.	2.1	35
34	Late Quaternary dynamics of a South African floodplain wetland and the implications for assessing recent human impacts. Geomorphology, 2009, 106, 278-291.	2.6	35
35	THE GEOMORPHOLOGY OF THE NYL RIVER AND FLOODPLAIN IN THE SEMI-ARID NORTHERN PROVINCE, SOUTH AFRICA. Southern African Geographical Journal, 2002, 84, 226-237.	1.8	33
36	Late Holocene development of a major fluvial discontinuity in floodplain wetlands of the Blood River, eastern South Africa. Geomorphology, 2014, 205, 128-141.	2.6	33

3

#	Article	IF	Citations
37	Invisible geomorphology?. Earth Surface Processes and Landforms, 2009, 34, 752-754.	2.5	31
38	The origin and development of the Nyl River floodplain wetland, Limpopo Province, South Africa: trunk–tributary river interactions in a dryland setting. Southern African Geographical Journal, 2011, 93, 172-190.	1.8	30
39	Timescales, mechanisms, and controls of incisional avulsions in floodplain wetlands: Insights from the Tshwane River, semiarid South Africa. Geomorphology, 2017, 283, 158-172.	2.6	30
40	The geomorphology of Australia's fluvial systems: retrospect, perspect and prospect. Progress in Physical Geography, 1995, 19, 35-60.	3.2	28
41	The interplay between extrinsic and intrinsic controls in determining floodplain wetland characteristics in the South African drylands. Earth Surface Processes and Landforms, 2017, 42, 1092-1109.	2.5	27
42	9.31 Dryland Fluvial Environments: Assessing Distinctiveness and Diversity from a Global Perspective. , 2013, , 612-644.		26
43	Identifying threshold responses of Australian dryland rivers to future hydroclimatic change. Scientific Reports, 2020, 10, 6653.	3.3	26
44	Excavations at Site C North, Kalambo Falls, Zambia: New Insights into the Mode 2/3 Transition in South-Central Africa. Journal of African Archaeology, 2015, 13, 187-214.	0.6	26
45	Dynamics of pothole growth as defined by field data and geometrical description. Journal of Geophysical Research, 2005, 110, n/a-n/a.	3.3	25
46	The role of geomorphology in evaluating remediation options for floodplain wetlands: the case of Ramsar-listed Seekoeivlei, eastern South Africa. Wetlands Ecology and Management, 2010, 18, 119-134.	1.5	25
47	The Kufrah paleodrainage system in Libya: A past connection to the Mediterranean Sea?. Comptes Rendus - Geoscience, 2012, 344, 406-414.	1.2	24
48	Visualizing geomorphology: improving communication of data and concepts through engagement with the arts. Earth Surface Processes and Landforms, 2016, 41, 1793-1796.	2.5	23
49	Applying Independent Component Analysis on Sentinel-2 Imagery to Characterize Geomorphological Responses to an Extreme Flood Event near the Non-Vegetated RÃo Colorado Terminus, Salar de Uyuni, Bolivia. Remote Sensing, 2018, 10, 725.	4.0	23
50	The sky is the limit: reconstructing physical geography from an aerial perspective. Journal of Geography in Higher Education, 2017, 41, 134-146.	2.6	22
51	Morphodynamics of bedrock-influenced dryland rivers during extreme floods: Insights from the Kruger National Park, South Africa. Bulletin of the Geological Society of America, 2018, 130, 1825-1841.	3.3	22
52	Arid geomorphology: recent progress from an Earth System Science perspective. Progress in Physical Geography, 2008, 32, 81-101.	3.2	21
53	Chronology and controls of donga (gully) formation in the upper Blood River catchment, KwaZulu-Natal, South Africa: Evidence for a climatic driver of erosion. Holocene, 2013, 23, 1875-1887.	1.7	21
54	The character, origin and palaeoenvironmental significance of the Wonderkrater spring mound, South Africa. Journal of African Earth Sciences, 2010, 58, 115-126.	2.0	19

#	Article	IF	CITATIONS
55	Drainage network development in the KeanakÄkoâ€̃i tephra, KÄ«lauea Volcano, Hawaiâ€̃i: Implications for fluvial erosion and valley network formation on early Mars. Journal of Geophysical Research, 2012, 117, .	3.3	18
56	Origin and development of theater-headed valleys in the Atacama Desert, northern Chile: Morphological analogs to martian valley networks. Icarus, 2014, 243, 296-310.	2.5	17
57	Visualisation of flooding along an unvegetated, ephemeral river using Google Earth Engine: Implications for assessment of channel-floodplain dynamics in a time of rapid environmental change. Journal of Environmental Management, 2021, 278, 111559.	7.8	16
58	Quantifying and contextualising cyclone-driven, extreme flood magnitudes in bedrock-influenced dryland rivers. Advances in Water Resources, 2019, 123, 145-159.	3.8	15
59	Effects of vegetation on bacterial communities, carbon and nitrogen in dryland soil surfaces: implications for shrub encroachment in the southwest Kalahari. Science of the Total Environment, 2021, 764, 142847.	8.0	15
60	Google Earth as a resource. Geography, 2015, 100, 51-56.	0.6	15
61	Chute cutoff-driven abandonment and sedimentation of meander bends along a fine-grained, non-vegetated, ephemeral river on the Bolivian Altiplano. Geomorphology, 2020, 350, 106917.	2.6	14
62	Digital Elevation Models for topographic characterisation and flood flow modelling along low-gradient, terminal dryland rivers: A comparison of spaceborne datasets for the RÃo Colorado, Bolivia. Journal of Hydrology, 2020, 591, 125617.	5.4	14
63	Topographic, Hydraulic, and Vegetative Controls on Bar and Island Development in Mixed Bedrockâ€Alluvial, Multichanneled, Dryland Rivers. Water Resources Research, 2020, 56, e2019WR026101.	4.2	14
64	Arid geomorphology. Progress in Physical Geography, 2012, 36, 262-284.	3.2	13
65	Temporal observations of a linear sand dune in the Simpson Desert, central Australia: Testing models for dune formation on planetary surfaces. Journal of Geophysical Research E: Planets, 2015, 120, 1736-1750.	3.6	13
66	Cosmogenic (sup) 3 / sup > He Measurements Provide Insight into Lithologic Controls on Bedrock Channel Incision: Examples from the South African Interior. Journal of Geology, 2016, 124, 423-434.	1.4	13
67	Incised meanders along the mixed bedrock-alluvial Orange River, Northern Cape Province, South Africa. Zeitschrift Fýr Geomorphologie, 2004, 48, 273-292.	0.8	13
68	A nested hierarchical perspective to enhance interpretations and communication in fluvial geomorphology for use in water resources management: Lessons from the Okavango Delta, Botswana. Geographical Journal, 2018, 184, 192-207.	3.1	12
69	Cascades of subâ€decadal, channelâ€floodplain changes in lowâ€gradient, nonâ€vegetated reaches near a dryland river terminus: Salar de Uyuni, Bolivia. Earth Surface Processes and Landforms, 2019, 44, 490-506.	2.5	12
70	A shifting â€~river of sand': The profound response of Australia's Warrego River to Holocene hydroclimatic change. Geomorphology, 2020, 370, 107385.	2.6	11
71	Long-term flood controls on semi-arid river form: evidence from the Sabie and Olifants rivers, eastern South Africa. Proceedings of the International Association of Hydrological Sciences, 0, 367, 141-146.	1.0	11
72	The 4th International Palaeoflood Workshop and trends in palaeoflood science. Global and Planetary Change, 2010, 70, 1-4.	3.5	10

#	Article	IF	Citations
73	Equality, diversity, inclusion: ensuring a resilient future for geomorphology. Earth Surface Processes and Landforms, 2021, 46, 5-11.	2.5	10
74	Significantly enhanced mid Holocene fluvial activity in a globally important, aridâ€zone wetland: The Okavango Delta, Botswana. Earth Surface Processes and Landforms, 2022, 47, 854-871.	2.5	10
75	14.5 Google Earthâ,,¢ in Geomorphology: Re-Enchanting, Revolutionizing, or Just another Resource?. , 2013, , 53-64.		9
76	Small-Scale Spatial Heterogeneity of Photosynthetic Fluorescence Associated with Biological Soil Crust Succession in the Tengger Desert, China. Microbial Ecology, 2019, 78, 936-948.	2.8	8
77	Searching for an Anthropo(s)cene in the Uplands of Mid Wales. GeoHumanities, 2017, 3, 567-579.	0.9	7
78	Editorial: Perspectives on the contemporary art-geoscience interface. Journal of Maps, 2019, 15, 1-8.	2.0	7
79	Remembering and forgetting floods and droughts: lessons from the Welsh colony in Patagonia. Cultural Geographies, 2021, 28, 341-361.	1.9	7
80	Morphodynamic simulation of sediment deposition patterns on a recently stripped bedrock anastomosed channel. Proceedings of the International Association of Hydrological Sciences, 0, 377, 51-56.	1.0	7
81	A comparison of multiple luminescence chronometers at Voordrag, South Africa. Quaternary Geochronology, 2020, 60, 101094.	1.4	5
82	Changes in fluvial systems during the Quaternary. , 2016, , 170-187.		4
83	The â€~Global Wetland Outlook' report. Geography, 2019, 104, 154-159.	0.6	3
84	How have Cretan rivers responded to late Holocene uplift? A multiâ€millennial, multiâ€catchment field experiment to evaluate the applicability of Schumm and Parker's (1973) complex response model. Earth Surface Processes and Landforms, 2022, 47, 2178-2197.	2.5	3
85	The Chobe-Zambezi Channel-Floodplain System: Anatomy of a Wetland in a Dryland. World Geomorphological Landscapes, 2022, , 117-130.	0.3	2
86	TREES, LARGE WOOD AND STREAMS: USING ARCHIVE SURVEY DATA TO INFORM CHANGING INTERACTIONS IN A HUMANâ€IMPACTED LANDSCAPE. Earth Surface Processes and Landforms, 0, , .	2.5	2
87	Knickpoint evolution in a supraglacial stream. Geografiska Annaler, Series A: Physical Geography, 2019, 101, 118-135.	1.5	1
88	Luminescence, Geomorphological Processes. Encyclopedia of Earth Sciences Series, 2015, , 470-475.	0.1	1
89	Luminescence, Geomorphological Processes. , 2013, , 1-9.		1
90	Soil properties across a hydrological gradient in saladas from northeast Spain: what are the implications for soil carbon stocks, CO2 efflux and microbial communities in a warming world?. Wetlands Ecology and Management, 0, , 1.	1.5	1

STEPHEN S TOOTH

#	Article	IF	CITATIONS
91	Research resource review: Olav Slaymaker, Tom Spencer, and Christine Embleton-Hamann (eds), Geomorphology and Global Environmental Change. Cambridge: Cambridge University Press, 2009; 450 pp.: 9780521878128, £45 (hbk). Progress in Physical Geography, 2010, 34, 865-868.	3.2	0
92	Dryland river adjustments in a warming world. Geography, 2021, 106, 49-52.	0.6	0
93	Professor Kenneth John Gregory (1938–2020): The career, contributions and legacy of an eminent geographer and fluvial geomorphologist. Earth Surface Processes and Landforms, 2023, 48, 34-46.	2.5	0
94	Dryland Fluvial Environments: Assessing Distinctiveness and Diversity From a Global Perspective., 2013,,961-993.		0