Jeffrey W Tyner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416865/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	AP24534, a Pan-BCR-ABL Inhibitor for Chronic Myeloid Leukemia, Potently Inhibits the T315I Mutant and Overcomes Mutation-Based Resistance. Cancer Cell, 2009, 16, 401-412.	16.8	1,050
2	Functional genomic landscape of acute myeloid leukaemia. Nature, 2018, 562, 526-531.	27.8	907
3	CAL-101, a p110δ selective phosphatidylinositol-3-kinase inhibitor for the treatment of B-cell malignancies, inhibits PI3K signaling and cellular viability. Blood, 2011, 117, 591-594.	1.4	682
4	Oncogenic <i>CSF3R</i> Mutations in Chronic Neutrophilic Leukemia and Atypical CML. New England Journal of Medicine, 2013, 368, 1781-1790.	27.0	499
5	Persistent activation of an innate immune response translates respiratory viral infection into chronic lung disease. Nature Medicine, 2008, 14, 633-640.	30.7	477
6	Activating alleles of JAK3 in acute megakaryoblastic leukemia. Cancer Cell, 2006, 10, 65-75.	16.8	295
7	CCL5-CCR5 interaction provides antiapoptotic signals for macrophage survival during viral infection. Nature Medicine, 2005, 11, 1180-1187.	30.7	263
8	Blocking airway mucous cell metaplasia by inhibiting EGFR antiapoptosis and IL-13 transdifferentiation signals. Journal of Clinical Investigation, 2006, 116, 309-321.	8.2	231
9	CYT387, a novel JAK2 inhibitor, induces hematologic responses and normalizes inflammatory cytokines in murine myeloproliferative neoplasms. Blood, 2010, 115, 5232-5240.	1.4	216
10	The TP53 Apoptotic Network Is a Primary Mediator of Resistance to BCL2 Inhibition in AML Cells. Cancer Discovery, 2019, 9, 910-925.	9.4	215
11	Ex vivo drug response profiling detects recurrent sensitivity patterns in drug-resistant acute lymphoblastic leukemia. Blood, 2017, 129, e26-e37.	1.4	195
12	Identification of Interleukin-1 by Functional Screening as a Key Mediator of Cellular Expansion and Disease Progression in Acute Myeloid Leukemia. Cell Reports, 2017, 18, 3204-3218.	6.4	187
13	Targeting super-enhancer-associated oncogenes in oesophageal squamous cell carcinoma. Gut, 2017, 66, 1358-1368.	12.1	169
14	The new genetics of chronic neutrophilic leukemia and atypical CML: implications for diagnosis and treatment. Blood, 2013, 122, 1707-1711.	1.4	162
15	Crosstalk between ROR1 and the Pre-B Cell Receptor Promotes Survival of t(1;19) Acute Lymphoblastic Leukemia. Cancer Cell, 2012, 22, 656-667.	16.8	153
16	Combining the Allosteric Inhibitor Asciminib with Ponatinib Suppresses Emergence of and Restores Efficacy against Highly Resistant BCR-ABL1 Mutants. Cancer Cell, 2019, 36, 431-443.e5.	16.8	137
17	Potent Activity of Ponatinib (AP24534) in Models of FLT3-Driven Acute Myeloid Leukemia and Other Hematologic Malignancies. Molecular Cancer Therapeutics, 2011, 10, 1028-1035.	4.1	135
18	An expanded universe of cancer targets. Cell, 2021, 184, 1142-1155.	28.9	135

#	Article	IF	CITATIONS
19	Kinase Pathway Dependence in Primary Human Leukemias Determined by Rapid Inhibitor Screening. Cancer Research, 2013, 73, 285-296.	0.9	134
20	TYK2–STAT1–BCL2 Pathway Dependence in T-cell Acute Lymphoblastic Leukemia. Cancer Discovery, 2013, 3, 564-577.	9.4	122
21	High-throughput sequencing screen reveals novel, transforming RAS mutations in myeloid leukemia patients. Blood, 2009, 113, 1749-1755.	1.4	119
22	Turning the tide in myelodysplastic/myeloproliferative neoplasms. Nature Reviews Cancer, 2017, 17, 425-440.	28.4	117
23	Immunity, Inflammation, and Remodeling in the Airway Epithelial Barrier: Epithelial-Viral-Allergic Paradigm. Physiological Reviews, 2002, 82, 19-46.	28.8	115
24	The ITIM-containing receptor LAIR1 is essential for acute myeloid leukaemia development. Nature Cell Biology, 2015, 17, 665-677.	10.3	112
25	Clinical resistance to crenolanib in acute myeloid leukemia due to diverse molecular mechanisms. Nature Communications, 2019, 10, 244.	12.8	111
26	RNAi screen for rapid therapeutic target identification in leukemia patients. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 8695-8700.	7.1	110
27	FGF2 from Marrow Microenvironment Promotes Resistance to FLT3 Inhibitors in Acute Myeloid Leukemia. Cancer Research, 2016, 76, 6471-6482.	0.9	110
28	Self-Enforcing Feedback Activation between BCL6 and Pre-B Cell Receptor Signaling Defines a Distinct Subtype of Acute Lymphoblastic Leukemia. Cancer Cell, 2015, 27, 409-425.	16.8	109
29	Antagonism of SET Using OP449 Enhances the Efficacy of Tyrosine Kinase Inhibitors and Overcomes Drug Resistance in Myeloid Leukemia. Clinical Cancer Research, 2014, 20, 2092-2103.	7.0	108
30	Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nature Cancer, 2020, 1, 826-839.	13.2	108
31	Foretinib is a potent inhibitor of oncogenic ROS1 fusion proteins. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 19519-19524.	7.1	106
32	Mutations in G protein \hat{I}^2 subunits promote transformation and kinase inhibitor resistance. Nature Medicine, 2015, 21, 71-75.	30.7	106
33	Super-Enhancers Promote Transcriptional Dysregulation in Nasopharyngeal Carcinoma. Cancer Research, 2017, 77, 6614-6626.	0.9	103
34	The CSF3R T618I mutation causes a lethal neutrophilic neoplasia in mice that is responsive to therapeutic JAK inhibition. Blood, 2013, 122, 3628-3631.	1.4	95
35	Genomic landscape of liposarcoma. Oncotarget, 2015, 6, 42429-42444.	1.8	94
36	The ABL Switch Control Inhibitor DCC-2036 Is Active against the Chronic Myeloid Leukemia Mutant BCR-ABLT315I and Exhibits a Narrow Resistance Profile. Cancer Research, 2011, 71, 3189-3195.	0.9	91

#	Article	IF	CITATIONS
37	Molecularly targeted drug combinations demonstrate selective effectiveness for myeloid- and lymphoid-derived hematologic malignancies. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, E7554-E7563.	7.1	86
38	SGX393 inhibits the CML mutant Bcr-Abl ^{T315I} and preempts <i>in vitro</i> resistance when combined with nilotinib or dasatinib. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5507-5512.	7.1	84
39	High-throughput sequence analysis of the tyrosine kinome in acute myeloid leukemia. Blood, 2008, 111, 4788-4796.	1.4	84
40	Crosstalk between KIT and FGFR3 Promotes Gastrointestinal Stromal Tumor Cell Growth and Drug Resistance. Cancer Research, 2015, 75, 880-891.	0.9	81
41	CSF1R inhibitors exhibit antitumor activity in acute myeloid leukemia by blocking paracrine signals from support cells. Blood, 2019, 133, 588-599.	1.4	80
42	Functional integration of acute myeloid leukemia into the vascular niche. Leukemia, 2014, 28, 1978-1987.	7.2	75
43	Genomics of chronic neutrophilic leukemia. Blood, 2017, 129, 715-722.	1.4	74
44	TSLP signaling pathway map: a platform for analysis of TSLP-mediated signaling. Database: the Journal of Biological Databases and Curation, 2014, 2014, bau007-bau007.	3.0	71
45	Alterations in acute myeloid leukaemia bone marrow stromal cell exosome content coincide with gains in tyrosine kinase inhibitor resistance. British Journal of Haematology, 2016, 172, 983-986.	2.5	71
46	Efficacy of Ruxolitinib in Patients With Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia. Journal of Clinical Oncology, 2020, 38, 1006-1018.	1.6	71
47	RNAi screening of the tyrosine kinome identifies therapeutic targets in acute myeloid leukemia. Blood, 2008, 111, 2238-2245.	1.4	67
48	MET Receptor Sequence Variants R970C and T992I Lack Transforming Capacity. Cancer Research, 2010, 70, 6233-6237.	0.9	65
49	Targeting BCL-2 and ABL/LYN in Philadelphia chromosome–positive acute lymphoblastic leukemia. Science Translational Medicine, 2016, 8, 354ra114.	12.4	65
50	Significant clinical response to JAK1/2 inhibition in a patient with CSF3R-T618I-positive atypical chronic myeloid leukemia. Leukemia Research Reports, 2014, 3, 67-69.	0.4	62
51	The AML microenvironment catalyzes a stepwise evolution to gilteritinib resistance. Cancer Cell, 2021, 39, 999-1014.e8.	16.8	62
52	Apoptosis in the Airways. American Journal of Respiratory Cell and Molecular Biology, 2003, 29, 3-7.	2.9	61
53	BCL6 promotes glioma and serves as a therapeutic target. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 3981-3986.	7.1	58
54	UNC2025, a MERTK Small-Molecule Inhibitor, Is Therapeutically Effective Alone and in Combination with Methotrexate in Leukemia Models. Clinical Cancer Research, 2017, 23, 1481-1492.	7.0	58

#	Article	IF	CITATIONS
55	Metabolic reprogramming ensures cancer cell survival despite oncogenic signaling blockade. Genes and Development, 2017, 31, 2067-2084.	5.9	57
56	Genomic landscape of neutrophilic leukemias of ambiguous diagnosis. Blood, 2019, 134, 867-879.	1.4	55
57	Reversible suppression of T cell function in the bone marrow microenvironment of acute myeloid leukemia. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14331-14341.	7.1	55
58	Heterogeneity of Pancreatic Cancer Metastases in a Single Patient Revealed by Quantitative Proteomics. Molecular and Cellular Proteomics, 2014, 13, 2803-2811.	3.8	52
59	Ligand Independence of the T618I Mutation in the Colony-stimulating Factor 3 Receptor (CSF3R) Protein Results from Loss of O-Linked Glycosylation and Increased Receptor Dimerization. Journal of Biological Chemistry, 2014, 289, 5820-5827.	3.4	51
60	Activation of protein phosphatase 2A tumor suppressor as potential treatment of pancreatic cancer. Molecular Oncology, 2015, 9, 889-905.	4.6	51
61	Acute and Chronic Airway Responses to Viral Infection: Implications for Asthma and Chronic Obstructive Pulmonary Disease. Proceedings of the American Thoracic Society, 2005, 2, 132-140.	3.5	50
62	TSLP Signaling Network Revealed by SILAC-Based Phosphoproteomics. Molecular and Cellular Proteomics, 2012, 11, M112.017764.	3.8	47
63	Identification of a Novel SYK/c-MYC/MALAT1 Signaling Pathway and Its Potential Therapeutic Value in Ewing Sarcoma. Clinical Cancer Research, 2017, 23, 4376-4387.	7.0	46
64	Small molecule inhibitor screen identifies synergistic activity of the bromodomain inhibitor CPI203 and bortezomib in drug resistant myeloma. Oncotarget, 2015, 6, 18921-18932.	1.8	45
65	A novel fusion of RBM6 to CSF1R in acute megakaryoblastic leukemia. Blood, 2007, 110, 323-333.	1.4	44
66	Ponatinib overcomes FGF2-mediated resistance in CML patients without kinase domain mutations. Blood, 2014, 123, 1516-1524.	1.4	44
67	AZD4320, A Dual Inhibitor of Bcl-2 and Bcl-xL, Induces Tumor Regression in Hematologic Cancer Models without Dose-limiting Thrombocytopenia. Clinical Cancer Research, 2020, 26, 6535-6549.	7.0	42
68	Cytokine-Mediated Inflammatory Pathways Promote Clonal Evolution and Disease Progression in Acute Myeloid Leukemia. Blood, 2016, 128, 1688-1688.	1.4	41
69	Cholesterol esterification inhibition and imatinib treatment synergistically inhibit growth of BCR-ABL mutation-independent resistant chronic myelogenous leukemia. PLoS ONE, 2017, 12, e0179558.	2.5	41
70	The Selective Syk Inhibitor P505-15 (PRT062607) Inhibits B Cell Signaling and Function In Vitro and In Vivo and Augments the Activity of Fludarabine in Chronic Lymphocytic Leukemia. Journal of Pharmacology and Experimental Therapeutics, 2013, 344, 378-387.	2.5	40
71	The Colony-Stimulating Factor 3 Receptor T640N Mutation Is Oncogenic, Sensitive to JAK Inhibition, and Mimics T618I. Clinical Cancer Research, 2016, 22, 757-764.	7.0	40
72	What's different about atypical CML and chronic neutrophilic leukemia?. Hematology American Society of Hematology Education Program, 2015, 2015, 264-271.	2.5	38

#	Article	IF	CITATIONS
73	FGF2-FGFR1 signaling regulates release of Leukemia-Protective exosomes from bone marrow stromal cells. ELife, 2019, 8, .	6.0	38
74	Belinostat and panobinostat (HDACI): in vitro and in vivo studies in thyroid cancer. Journal of Cancer Research and Clinical Oncology, 2013, 139, 1507-1514.	2.5	37
75	Targeting of colony-stimulating factor 1 receptor (CSF1R) in the CLL microenvironment yields antineoplastic activity in primary patient samples. Oncotarget, 2018, 9, 24576-24589.	1.8	36
76	p38 MAPK inhibition suppresses the TLR-hypersensitive phenotype in FANCC- and FANCA-deficient mononuclear phagocytes. Blood, 2012, 119, 1992-2002.	1.4	35
77	PDGFRÎ ² reverses EphB4 signaling in alveolar rhabdomyosarcoma. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 6383-6388.	7.1	33
78	YM155 potently kills acute lymphoblastic leukemia cells through activation of the DNA damage pathway. Journal of Hematology and Oncology, 2015, 8, 39.	17.0	32
79	SOX7 regulates MAPK/ERK-BIM mediated apoptosis in cancer cells. Oncogene, 2019, 38, 6196-6210.	5.9	32
80	Identification and Characterization of Tyrosine Kinase Nonreceptor 2 Mutations in Leukemia through Integration of Kinase Inhibitor Screening and Genomic Analysis. Cancer Research, 2016, 76, 127-138.	0.9	31
81	Proteolysis targeting chimeric molecules as therapy for multiple myeloma: efficacy, biomarker and drug combinations. Haematologica, 2019, 104, 1209-1220.	3.5	30
82	Dynamic and Nuclear Expression of PDGFRα and IGF-1R in Alveolar Rhabdomyosarcoma. Molecular Cancer Research, 2013, 11, 1303-1313.	3.4	29
83	Mutant calreticulinâ€expressing cells induce monocyte hyperreactivity through a paracrine mechanism. American Journal of Hematology, 2016, 91, 211-219.	4.1	29
84	Durable Disease Control with MEK Inhibition in a Patient with NRAS-mutated Atypical Chronic Myeloid Leukemia. Cureus, 2015, 7, e414.	0.5	29
85	Src and STAT3 inhibitors synergize to promote tumor inhibition in renal cell carcinoma. Oncotarget, 2015, 6, 44675-44687.	1.8	27
86	Threshold Levels of ABL Tyrosine Kinase Inhibitors Retained in Chronic Myeloid Leukemia Cells Determine Their Commitment to Apoptosis. Cancer Research, 2013, 73, 3356-3370.	0.9	26
87	Combined targeting of SET and tyrosine kinases provides an effective therapeutic approach in human T-cell acute lymphoblastic leukemia. Oncotarget, 2016, 7, 84214-84227.	1.8	26
88	Kinase profiling of liposarcomas using RNAi and drug screening assays identified druggable targets. Journal of Hematology and Oncology, 2017, 10, 173.	17.0	25
89	Imatinib and Dasatinib Inhibit Hemangiosarcoma and Implicate PDGFR-Î ² and Src in Tumor Growth. Translational Oncology, 2013, 6, 158-IN7.	3.7	24
90	Corepressor Rcor1 is essential for murine erythropoiesis. Blood, 2014, 123, 3175-3184.	1.4	24

#	Article	IF	CITATIONS
91	ARID1A and CEBPÎ \pm cooperatively inhibit UCA1 transcription in breast cancer. Oncogene, 2018, 37, 5939-5951.	5.9	24
92	Understanding Drug Sensitivity and Tackling Resistance in Cancer. Cancer Research, 2022, 82, 1448-1460.	0.9	24
93	In vitro sensitivity to dasatinib in lymphoblasts from a patient with t(17;19)(q22;p13) gene rearrangement preâ€B acute lymphoblastic leukemia. Pediatric Blood and Cancer, 2012, 59, 576-579.	1.5	23
94	Monocytic Differentiation and AHR Signaling as Primary Nodes of BET Inhibitor Response in Acute Myeloid Leukemia. Blood Cancer Discovery, 2021, 2, 518-531.	5.0	23
95	CPX-351 exhibits potent and direct ex vivo cytotoxicity against AML blasts with enhanced efficacy for cells harboring the FLT3-ITD mutation. Leukemia Research, 2017, 53, 39-49.	0.8	22
96	Gain-of-function mutations in granulocyte colony–stimulating factor receptor (CSF3R) reveal distinct mechanisms of CSF3R activation. Journal of Biological Chemistry, 2018, 293, 7387-7396.	3.4	22
97	Discovery and characterization of targetable NTRK point mutations in hematologic neoplasms. Blood, 2020, 135, 2159-2170.	1.4	22
98	Pharmacologic Targeting of Mcl-1 Induces Mitochondrial Dysfunction and Apoptosis in B-Cell Lymphoma Cells in a <i>TP53-</i> and <i>BAX-</i> Dependent Manner. Clinical Cancer Research, 2021, 27, 4910-4922.	7.0	22
99	A case study of personalized therapy for osteosarcoma. Pediatric Blood and Cancer, 2013, 60, 1313-1319.	1.5	21
100	EPHB4 is a therapeutic target in AML and promotes leukemia cell survival via AKT. Blood Advances, 2017, 1, 1635-1644.	5.2	21
101	Small molecule inhibitor screening identifified HSP90 inhibitor 17-AAG as potential therapeutic agent for gallbladder cancer. Oncotarget, 2017, 8, 26169-26184.	1.8	21
102	Therapeutically Targetable ALK Mutations in Leukemia. Cancer Research, 2015, 75, 2146-2150.	0.9	20
103	A genome-wide CRISPR screen identifies regulators of MAPK and MTOR pathways that mediate resistance to sorafenib in acute myeloid leukemia. Haematologica, 2022, 107, 77-85.	3.5	20
104	Causal role for JAK2 V617F in thrombosis. Blood, 2013, 122, 3705-3706.	1.4	18
105	Simultaneous kinase inhibition with ibrutinib and BCL2 inhibition with venetoclax offers a therapeutic strategy for acute myeloid leukemia. Leukemia, 2020, 34, 2342-2353.	7.2	18
106	Biomarkers Predicting Venetoclax Sensitivity and Strategies for Venetoclax Combination Treatment. Blood, 2018, 132, 175-175.	1.4	18
107	Two myeloid leukemia cases with rareFLT3fusions. Journal of Physical Education and Sports Management, 2018, 4, a003079.	1.2	16
108	Dual inhibition of JAK1/2 kinases and BCL2: a promising therapeutic strategy for acute myeloid leukemia. Leukemia, 2018, 32, 2025-2028.	7.2	16

#	Article	IF	CITATIONS
109	Synthetic lethality of TNK2 inhibition in PTPN11-mutant leukemia. Science Signaling, 2018, 11, .	3.6	16
110	Predicting response to BET inhibitors using computational modeling: A BEAT AML project study. Leukemia Research, 2019, 77, 42-50.	0.8	16
111	LMTK3 is essential for oncogenic KIT expression in KIT-mutant GIST and melanoma. Oncogene, 2019, 38, 1200-1210.	5.9	16
112	ERBB2/HER2 mutations are transforming and therapeutically targetable in leukemia. Leukemia, 2020, 34, 2798-2804.	7.2	16
113	Matched Targeted Therapy for Pediatric Patients with Relapsed, Refractory, or High-Risk Leukemias: A Report from the LEAP Consortium. Cancer Discovery, 2021, 11, 1424-1439.	9.4	16
114	Recent Progress in Chronic Neutrophilic Leukemia and Atypical Chronic Myeloid Leukemia. Current Hematologic Malignancy Reports, 2017, 12, 432-441.	2.3	16
115	Replication timing alterations in leukemia affect clinically relevant chromosome domains. Blood Advances, 2019, 3, 3201-3213.	5.2	15
116	An adaptive Src–PDGFRA–Raf axis in rhabdomyosarcoma. Biochemical and Biophysical Research Communications, 2012, 426, 363-368.	2.1	14
117	TNK1 is a ubiquitin-binding and 14-3-3-regulated kinase that can be targeted to block tumor growth. Nature Communications, 2021, 12, 5337.	12.8	14
118	Functional Genomics for Personalized Cancer Therapy. Science Translational Medicine, 2014, 6, 243fs26.	12.4	13
119	Pl <scp>GF</scp> enhances <scp>TLR</scp> â€dependent inflammatory responses in human mononuclear phagocytes. American Journal of Reproductive Immunology, 2017, 78, e12709.	1.2	13
120	Differentiation status of primary chronic myeloid leukemia cells affects sensitivity to BCR-ABL1 inhibitors. Oncotarget, 2017, 8, 22606-22615.	1.8	13
121	"Hit-and-Run―Effects of Paramyxoviruses as a Basis for Chronic Respiratory Disease. Pediatric Infectious Disease Journal, 2004, 23, S235-S245.	2.0	12
122	Induction of anaplastic lymphoma kinase (ALK) as a novel mechanism of EGFR inhibitor resistance in head and neck squamous cell carcinoma patient-derived models. Cancer Biology and Therapy, 2018, 19, 921-933.	3.4	12
123	Bayesian multi-source regression and monocyte-associated gene expression predict BCL-2 inhibitor resistance in acute myeloid leukemia. Npj Precision Oncology, 2021, 5, 71.	5.4	12
124	CX-4945, An Orally Bioavailable Selective Inhibitor of Casein Kinase 2 (CK2), Exhibits Anti-Tumor Activity in Hematologic Malignancies,. Blood, 2011, 118, 3512-3512.	1.4	12
125	Dual BTK/SYK inhibition with CG-806 (luxeptinib) disrupts B-cell receptor and Bcl-2 signaling networks in mantle cell lymphoma. Cell Death and Disease, 2022, 13, 246.	6.3	12
126	Unpaired Extracellular Cysteine Mutations of CSF3R Mediate Gain or Loss of Function. Cancer Research, 2017, 77, 4258-4267.	0.9	10

#	Article	IF	CITATIONS
127	Antileukemic efficacy of a potent artemisinin combined with sorafenib and venetoclax. Blood Advances, 2021, 5, 711-724.	5.2	10
128	Growth Arrest of BCR-ABL Positive Cells with a Sequence-Specific Polyamide-Chlorambucil Conjugate. PLoS ONE, 2008, 3, e3593.	2.5	9
129	HitWalker: variant prioritization for personalized functional cancer genomics. Bioinformatics, 2013, 29, 509-510.	4.1	9
130	Ex Vivo Analysis of Primary Tumor Specimens for Evaluation of Cancer Therapeutics. Annual Review of Cancer Biology, 2021, 5, 39-57.	4.5	9
131	A novel activating <i>JAK1</i> mutation in chronic eosinophilic leukemia. Blood Advances, 2021, 5, 3581-3586.	5.2	9
132	Effective Combination of CPX-351 with FLT3 Inhibitors in AML Blasts Harboring the FLT3-ITD Mutation. Blood, 2016, 128, 5124-5124.	1.4	9
133	A novel <i>AGGF1-PDGFRb</i> fusion in pediatric T-cell acute lymphoblastic leukemia. Haematologica, 2018, 103, e87-e91.	3.5	8
134	Maintenance and pharmacologic targeting of ROR1 protein levels via UHRF1 in t(1;19) pre-B-ALL. Oncogene, 2018, 37, 5221-5232.	5.9	8
135	Insights on mechanisms of clonal evolution in chronic neutrophilic leukemia on ruxolitinib therapy. Leukemia, 2020, 34, 1684-1688.	7.2	8
136	Comparison of methods to identify aberrant expression patterns in individual patients: augmenting our toolkit for precision medicine. Genome Medicine, 2013, 5, 103.	8.2	7
137	The PI3K/Akt1 pathway enhances steady-state levels of FANCL. Molecular Biology of the Cell, 2013, 24, 2582-2592.	2.1	7
138	Ultrasensitive proteomic quantitation of cellular signaling by digitized nanoparticle-protein counting. Scientific Reports, 2016, 6, 28163.	3.3	7
139	Integrating functional genomics to accelerate mechanistic personalized medicine. Journal of Physical Education and Sports Management, 2017, 3, a001370.	1.2	7
140	MS4A3 promotes differentiation in chronic myeloid leukemia by enhancing common Î ² -chain cytokine receptor endocytosis. Blood, 2022, 139, 761-778.	1.4	7
141	Aurora A kinase as a target for therapy in <i>TCF3-HLF</i> rearranged acute lymphoblastic leukemia. Haematologica, 2021, 106, 2990-2994.	3.5	6
142	Functional genomic analysis identifies drug targetable pathways in invasive and metastatic cutaneous squamous cell carcinoma. Journal of Physical Education and Sports Management, 2020, 6, a005439.	1.2	6
143	Associating drug sensitivity with differentiation status identifies effective combinations for acute myeloid leukemia. Blood Advances, 2022, 6, 3062-3067.	5.2	6
144	RNAi Screening of Leukemia Cells Using Electroporation. Methods in Molecular Biology, 2016, 1470, 85-94.	0.9	5

#	Article	IF	CITATIONS
145	Genomic markers of midostaurin drug sensitivity in FLT3 mutated and FLT3 wild-type acute myeloid leukemia patients. Oncotarget, 2020, 11, 2807-2818.	1.8	5
146	Next-Generation Medicine: Combining BCR-ABL and Hedgehog-Targeted Therapies. Clinical Cancer Research, 2013, 19, 1309-1311.	7.0	4
147	Disparate effects of <i>Shb</i> gene deficiency on disease characteristics in murine models of myeloid, B-cell, and T-cell leukemia. Tumor Biology, 2018, 40, 101042831877147.	1.8	4
148	Luxeptinib (CG-806) Targets FLT3 and Clusters of Kinases Operative in Acute Myeloid Leukemia. Molecular Cancer Therapeutics, 2022, 21, 1125-1135.	4.1	4
149	A molecular case report. Cancer Biology and Therapy, 2013, 14, 95-99.	3.4	3
150	Kinase Inhibitor Screening in Myeloid Malignancies. Hematology/Oncology Clinics of North America, 2017, 31, 693-704.	2.2	3
151	Inhibition of T315I Bcr-Abl and Other Imatinib-Resistant Bcr-Abl Mutants by the Selective Abl Kinase Inhibitor SGX70393 Blood, 2006, 108, 1373-1373.	1.4	3
152	Therapeutic Targeting of Mertk and BCL-2 in T-Cell and Early T-Precursor Acute Lymphoblastic Leukemia. Blood, 2021, 138, 1184-1184.	1.4	3
153	Functional proteomics of patient derived head and neck squamous cell carcinoma cells reveal novel applications of trametinib. Cancer Biology and Therapy, 2022, 23, 309-317.	3.4	3
154	Defining and Adjusting Divergent Host Responses to Viral Infection. Immunologic Research, 2005, 32, 123-142.	2.9	2
155	CSF1R Inhibition Targets AML Cells By Depleting Supportive Microenvironmental Signal from CD14+ Monocytes. Blood, 2015, 126, 3824-3824.	1.4	2
156	Characterizing Population Heterogeneity and Signaling Changes in Chronic Myeloid Leukemia Stem and Progenitor Cells upon Combined Treatment with Imatinib and MEK Inhibitors Using Quantitative Single Cell Phospho-Imaging. Blood, 2018, 132, 4248-4248.	1.4	2
157	Rapid identification of therapeutic targets in hematologic malignancies via functional genomics. Therapeutic Advances in Hematology, 2011, 2, 83-93.	2.5	1
158	JAK2 V617F down-modulates MPL. Blood, 2012, 119, 4579-4580.	1.4	1
159	JAKed up phenotype of CEBPA-mutant AML. Blood, 2016, 127, 2946-2947.	1.4	1
160	What do functional genomics tell us about pathogenesis of AML?. Best Practice and Research in Clinical Haematology, 2019, 32, 101101.	1.7	1
161	OP449, a Novel SET Antagonist, Is Cytotoxic To Leukemia Cells and Enhances Efficacy Of Tyrosine Kinase Inhibitors In Drug-Resistant Myeloid Leukemias. Blood, 2013, 122, 2511-2511.	1.4	1
162	Immunoprecipitation of ROR1. Bio-protocol, 2013, 3, .	0.4	1

#	Article	IF	CITATIONS
163	CSF3R T618I Mouse Bone Marrow Transplant Model Of Neutrophilic Leukemia. Blood, 2013, 122, 223-223.	1.4	1
164	Significant In Vivo Sensitivity to Aurora Kinase Inhibition in TCF3-Hlf rearranged Acute Lymphoblastic Leukemia. Blood, 2018, 132, 4026-4026.	1.4	1
165	Phosphoproteomics microarray screen reveals novel interaction between MPL and Tensin2. Cell Cycle, 2011, 10, 2621-2621.	2.6	Ο
166	Identification of Tyrosine Kinase Mutations by Large-Scale DNA Sequencing in Patients with Chronic Myelomonocytic Leukemia/Atypical Chronic Myeloid Leukemia Blood, 2006, 108, 3606-3606.	1.4	0
167	RNAi Functional Screening of the Tyrosine Kinome Identifies Therapeutic Targets in Acute Myeloid Leukemia Patients Blood, 2007, 110, 208-208.	1.4	Ο
168	Flt3 Kinase Regulates Microvesicle Transfer of miRNA Between AML and Stromal Cells. Blood, 2011, 118, 1492-1492.	1.4	0
169	ROR1 Flow Cytometry. Bio-protocol, 2013, 3, .	0.4	Ο
170	Integrated Analysis Of CRLF2 Signaling In Acute Lymphoblastic Leukemia Identifies Polo-Like Kinase 1 As a Therapeutic Target. Blood, 2013, 122, 2667-2667.	1.4	0
171	Critical Role Of Interleukin Receptor Signaling In Acute Myeloid Leukemia Identified Using An RNAi Functional Screen. Blood, 2013, 122, 473-473.	1.4	Ο
172	The CSF3R T618I Mutation Found In Chronic Neutrophilic Leukemia Removes An O-Linked Glycosylation Site and Increases Receptor Dimerization. Blood, 2013, 122, 270-270.	1.4	0
173	FGF2 Promotes Resistance To Quizartinib In Vitro, and FGF2 Increases In The Marrow Of Patients Prior To Resistance. Blood, 2013, 122, 2541-2541.	1.4	Ο
174	The Beta-Subunit Of Heterotrimeric G Proteins Harbors Gain-Of-Function Mutations In Multiple Hematologic Malignancies. Blood, 2013, 122, 2510-2510.	1.4	0
175	FGF2 Mediates Resistance In CML Patients In The Absence Of Kinase Domain Mutations, and Resistance Is Overcome By Ponatinib. Blood, 2013, 122, 3983-3983.	1.4	0
176	Placental Growth Factor Enhances Toll-like Receptor-Induced Inflammatory Cytokine Gene Expression Transcriptionally in Human Mononuclear Phagocytes. Blood, 2015, 126, 1006-1006.	1.4	0
177	CG'806, a First-in-Class Pan-FLT3/Pan-BTK Inhibitor, Exhibits Broader and Greater Potency Than Ibrutinib Against Primary and Cultured Malignant B Cells. Blood, 2018, 132, 3503-3503.	1.4	0
178	Combining p38MAPK Inhibitors with a Second Targeted Agent Enhances Blockade of Inflammatory Signaling-Mediated Survival in Acute Myeloid Leukemia Cells. Blood, 2018, 132, 2726-2726.	1.4	0
179	DNA Methylation-Based Classification Highlights the Role of the JAK-STAT Pathway in Acute Myeloid Leukemia. Blood, 2019, 134, 1413-1413.	1.4	0
180	Pharmacologic Targeting MCL1 with AZD5991 Induces Apoptosis and Mitochondrial Dysfunction in Non-Hodgkin Lymphoma (NHL) Cells. Blood, 2020, 136, 33-33.	1.4	0

#	Article	IF	CITATIONS
181	A Functional Profiling of Microenvironmental Factors and Small Molecules Reveals Monocyte Chemoattractant Protein-1 Mediates Drug Resistance in Acute Myeloid Leukemia. Blood, 2020, 136, 11-12.	1.4	0
182	Evolution of Gilteritinib Resistance from Residual Disease to Relapse. Blood, 2020, 136, 4-5.	1.4	0
183	Illuminating biological pathways for drug targeting in head and neck squamous cell carcinoma. , 2019, 14, e0223639.		Ο
184	Illuminating biological pathways for drug targeting in head and neck squamous cell carcinoma. , 2019, 14, e0223639.		0
185	Illuminating biological pathways for drug targeting in head and neck squamous cell carcinoma. , 2019, 14, e0223639.		Ο
186	Illuminating biological pathways for drug targeting in head and neck squamous cell carcinoma. , 2019, 14, e0223639.		0
187	TNK1 is a ubiquitinâ€sensing kinase that can be targeted to block tumor growth. FASEB Journal, 2022, 36, .	0.5	0