
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416364/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	DNA-launched RNA replicon vaccines induce potent anti-SARS-CoV-2 immune responses in mice. Scientific Reports, 2021, 11, 3125.	3.3	17
2	Targeting SARS-CoV-2 receptor-binding domain to cells expressing CD40 improves protection to infection in convalescent macaques. Nature Communications, 2021, 12, 5215.	12.8	22
3	A materials-science perspective on tackling COVID-19. Nature Reviews Materials, 2020, 5, 847-860.	48.7	228
4	Infectious RNA vaccine protects mice against chikungunya virus infection. Scientific Reports, 2020, 10, 21076.	3.3	13
5	Seroreactivity to Chikungunya and West Nile Viruses in Rwandan Blood Donors. Vector-Borne and Zoonotic Diseases, 2019, 19, 731-740.	1.5	8
6	Potent Anti-hepatitis C Virus (HCV) T Cell Immune Responses Induced in Mice Vaccinated with DNA-Launched RNA Replicons and Modified Vaccinia Virus Ankara-HCV. Journal of Virology, 2019, 93, .	3.4	9
7	Distinct Immunogenicity and Efficacy of Poxvirus-Based Vaccine Candidates against Ebola Virus Expressing GP and VP40 Proteins. Journal of Virology, 2018, 92, .	3.4	36
8	Potent therapeutic efficacy of an alphavirus replicon DNA vaccine expressing human papilloma virus E6 and E7 antigens. Oncolmmunology, 2018, 7, e1487913.	4.6	36
9	DNA-launched RNA replicon vaccines induce potent anti-Ebolavirus immune responses that can be further improved by a recombinant MVA boost. Scientific Reports, 2018, 8, 12459.	3.3	21
10	Resistance to cancer immunotherapy mediated by apoptosis of tumor-infiltrating lymphocytes. Nature Communications, 2017, 8, 1404.	12.8	177
11	Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight, 2017, 2, e83527.	5.0	62
12	Vaccines Against Chikungunya Virus Infection. , 2016, , 45-62.		3
13	H1N1 influenza virus induces narcolepsy-like sleep disruption and targets sleep–wake regulatory neurons in mice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E368-77.	7.1	71
14	Humoral responses to HIVconsv induced by heterologous vaccine modalities in rhesus macaques. Immunity, Inflammation and Disease, 2015, 3, 82-93.	2.7	8
15	Alphavirus Replicon DNA Expressing HIV Antigens Is an Excellent Prime for Boosting with Recombinant Modified Vaccinia Ankara (MVA) or with HIV gp140 Protein Antigen. PLoS ONE, 2015, 10, e0117042.	2.5	27
16	Self-replicating alphavirus RNA vaccines. Expert Review of Vaccines, 2015, 14, 177-194.	4.4	108
17	Modification of a salmonid alphavirus replicon vector for enhanced expression of heterologous antigens. Journal of General Virology, 2015, 96, 565-570.	2.9	3
18	Therapeutics and Vaccines Against Chikungunya Virus. Vector-Borne and Zoonotic Diseases, 2015, 15, 250-257.	1.5	58

#	Article	IF	CITATIONS
19	A 6K-Deletion Variant of Salmonid Alphavirus Is Non-Viable but Can Be Rescued through RNA Recombination. PLoS ONE, 2014, 9, e100184.	2.5	14
20	A Novel Poxvirus-Based Vaccine, MVA-CHIKV, Is Highly Immunogenic and Protects Mice against Chikungunya Infection. Journal of Virology, 2014, 88, 3527-3547.	3.4	101
21	Prime-Boost Immunization Strategies against Chikungunya Virus. Journal of Virology, 2014, 88, 13333-13343.	3.4	63
22	Kinetic and Phenotypic Analysis of CD8 ⁺ T Cell Responses after Priming with Alphavirus Replicons and Homologous or Heterologous Booster Immunizations. Journal of Virology, 2014, 88, 12438-12451.	3.4	31
23	Novel Attenuated Chikungunya Vaccine Candidates Elicit Protective Immunity in C57BL/6 mice. Journal of Virology, 2014, 88, 2858-2866.	3.4	138
24	Intradermal Electroporation of RNA. Methods in Molecular Biology, 2014, 1121, 147-154.	0.9	8
25	Virus replicon particle based Chikungunya virus neutralization assay using Gaussia luciferase as readout. Virology Journal, 2013, 10, 235.	3.4	37
26	The Adjuvant Activity of Alphavirus Replicons Is Enhanced by Incorporating the Microbial Molecule Flagellin into the Replicon. PLoS ONE, 2013, 8, e65964.	2.5	12
27	Superior Induction of T Cell Responses to Conserved HIV-1 Regions by Electroporated Alphavirus Replicon DNA Compared to That with Conventional Plasmid DNA Vaccine. Journal of Virology, 2012, 86, 4082-4090.	3.4	50
28	Host Gene Expression Signatures Discriminate between Ferrets Infected with Genetically Similar H1N1 Strains. PLoS ONE, 2012, 7, e40743.	2.5	12
29	Intradermal Electroporation of Naked Replicon RNA Elicits Strong Immune Responses. PLoS ONE, 2012, 7, e29732.	2.5	84
30	De-Novo Transcriptome Sequencing of a Normalized cDNA Pool from Influenza Infected Ferrets. PLoS ONE, 2012, 7, e37104.	2.5	13
31	Role of innate signalling pathways in the immunogenicity of alphaviral replicon-based vaccines. Virology Journal, 2011, 8, 36.	3.4	24
32	Protective Efficacy of Serially Up-Ranked Subdominant CD8+ T Cell Epitopes against Virus Challenges. PLoS Pathogens, 2011, 7, e1002041.	4.7	62
33	Long peptides induce polyfunctional T cells against conserved regions of HIVâ€1 with superior breadth to singleâ€gene vaccines in macaques. European Journal of Immunology, 2010, 40, 1973-1984.	2.9	71
34	Preclinical Evaluation of the Immunogenicity of C-Type HIV-1-Based DNA and NYVAC Vaccines in the Balb/C Mouse Model. Viral Immunology, 2009, 22, 309-319.	1.3	24
35	Comparison of Human and Rhesus Macaque T-Cell Responses Elicited by Boosting with NYVAC Encoding Human Immunodeficiency Virus Type 1 Clade C Immunogens. Journal of Virology, 2009, 83, 5881-5889.	3.4	34
36	EV01: A phase I trial in healthy HIV negative volunteers to evaluate a clade C HIV vaccine, NYVAC-C undertaken by the EuroVacc Consortium. Vaccine, 2008, 26, 3153-3161.	3.8	54

#	Article	IF	CITATIONS
37	An HIV-1 clade C DNA prime, NYVAC boost vaccine regimen induces reliable, polyfunctional, and long-lasting T cell responses. Journal of Experimental Medicine, 2008, 205, 63-77.	8.5	273
38	Comparative Prime-Boost Vaccinations Using Semliki Forest Virus, Adenovirus, and ALVAC Vectors Demonstrate Differences in the Generation of a Protective Central Memory CTL Response against the P815 Tumor. Journal of Immunology, 2007, 178, 6761-6769.	0.8	56
39	Increased human immunodeficiency virus type 1 Env expression and antibody induction using an enhanced alphavirus vector. Journal of General Virology, 2007, 88, 2774-2779.	2.9	10
40	Semliki Forest Virus Nonstructural Protein 2 Is Involved in Suppression of the Type I Interferon Response. Journal of Virology, 2007, 81, 8677-8684.	3.4	85
41	Viral vectors for malaria vaccine development. Vaccine, 2007, 25, 2567-2574.	3.8	62
42	Head-to-head comparison on the immunogenicity of two HIV/AIDS vaccine candidates based on the attenuated poxvirus strains MVA and NYVAC co-expressing in a single locus the HIV-1BX08 gp120 and HIV-1IIIB Gag-Pol-Nef proteins of clade B. Vaccine, 2007, 25, 2863-2885.	3.8	84
43	Generation and immunogenicity of novel HIV/AIDS vaccine candidates targeting HIV-1 Env/Gag-Pol-Nef antigens of clade C. Vaccine, 2007, 25, 1969-1992.	3.8	73
44	RIG-I-Mediated Antiviral Responses to Single-Stranded RNA Bearing 5'-Phosphates. Science, 2006, 314, 997-1001.	12.6	1,965
45	Humoral Responses against Coimmunized Protein Antigen but Not against Alphavirus-Encoded Antigens Require Alpha/Beta Interferon Signaling. Journal of Virology, 2006, 80, 7100-7110.	3.4	38
46	Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature, 2005, 433, 887-892.	27.8	801
47	Efficient expansion of HIV-1-specific T cell responses by homologous immunization with recombinant Semliki Forest virus particles. Virology, 2005, 341, 190-202.	2.4	16
48	Enhanced immunogenicity using an alphavirus replicon DNA vaccine against human immunodeficiency virus type 1. Journal of General Virology, 2005, 86, 349-354.	2.9	40
49	Reversible Acid-Induced Inactivation of the Membrane Fusion Protein of Semliki Forest Virus. Journal of Virology, 2005, 79, 7942-7948.	3.4	12
50	Early Alpha/Beta Interferon Production by Myeloid Dendritic Cells in Response to UV-Inactivated Virus Requires Viral Entry and Interferon Regulatory Factor 3 but Not MyD88. Journal of Virology, 2005, 79, 10376-10385.	3.4	59
51	Biochemical and Immunogenic Characterization of Soluble Human Immunodeficiency Virus Type 1 Envelope Glycoprotein Trimers Expressed by Semliki Forest Virus. Journal of Virology, 2005, 79, 10902-10914.	3.4	35
52	MyD88 Expression Is Required for Efficient Cross-Presentation of Viral Antigens from Infected Cells. Journal of Virology, 2005, 79, 2964-2972.	3.4	37
53	Importance of eIF2α Phosphorylation and Stress Granule Assembly in Alphavirus Translation Regulation. Molecular Biology of the Cell, 2005, 16, 3753-3763.	2.1	219
54	Modulation of Vaccineâ€Induced Immune Responses to Hepatitis C Virus in Rhesus Macaques by Altering Priming before Adenovirus Boosting. Journal of Infectious Diseases, 2005, 192, 920-929.	4.0	38

#	Article	IF	CITATIONS
55	Delivery and Expression of Heterologous Genes in Mammalian Cells Using Self-Replicating Alphavirus Vectors. , 2004, 246, 543-558.		22
56	Protective efficacy of a multicomponent vector vaccine in cynomolgus monkeys after intrarectal simian immunodeficiency virus challenge. Journal of General Virology, 2004, 85, 1191-1201.	2.9	63
57	Vaccine protection from CD4+ T-cell loss caused by simian immunodeficiency virus (SIV) mac251 is afforded by sequential immunization with three unrelated vaccine vectors encoding multiple SIV antigens. Journal of General Virology, 2004, 85, 2915-2924.	2.9	34
58	T-cell-mediated protective efficacy of a systemic vaccine approach in cynomolgus monkeys after SIV mucosal challenge. Journal of Medical Primatology, 2004, 33, 251-261.	0.6	19
59	Semliki Forest virus produced in the absence of the 6K protein has an altered spike structure as revealed by decreased membrane fusion capacity. Virology, 2004, 325, 200-206.	2.4	22
60	Immunization with PfEMP1-DBL1 $\hat{l}\pm$ generates antibodies that disrupt rosettes and protect against the sequestration of Plasmodium falciparum-infected erythrocytes. Vaccine, 2004, 22, 2701-2712.	3.8	56
61	DNA immunization followed by a viral vector booster in a Chlamydia pneumoniae mouse model. Vaccine, 2004, 22, 3386-3394.	3.8	20
62	A vaccine strategy utilizing a combination of three different chimeric vectors which share specific vaccine antigens. Journal of Medical Primatology, 2003, 29, 268-273.	0.6	15
63	Construction and immunogenicity in a prime–boost regimen of a Semliki Forest virus-vectored experimental HIV clade A vaccine. Journal of General Virology, 2003, 84, 361-368.	2.9	49
64	Live Viral Vectors: Semliki Forest Virus. , 2003, 87, 69-82.		17
65	Competition Between CTL Narrows the Immune Response Induced by Prime-Boost Vaccination Protocols. Journal of Immunology, 2002, 168, 4391-4398.	0.8	145
66	Vaccination with Recombinant Alphavirus or Immune-Stimulating Complex Antigen Against Respiratory Syncytial Virus. Journal of Immunology, 2002, 169, 3208-3216.	0.8	64
67	Comparison of the efficacy of early versus late viral proteins in vaccination against SIV. Vaccine, 2002, 20, 2921-2927.	3.8	45
68	Immunotherapy with recombinant SFV-replicons expressing the P815A tumor antigen or IL-12 induces tumor regression. International Journal of Cancer, 2002, 98, 554-560.	5.1	37
69	Semliki Forest virus-based vaccines: persistence, distribution and pathological analysis in two animal systems. Vaccine, 2001, 19, 1978-1988.	3.8	51
70	Enhanced simian immunodeficiency virus-specific immune responses in macaques induced by priming with recombinant Semliki Forest virus and boosting with modified vaccinia virus Ankara. Vaccine, 2001, 19, 3526-3536.	3.8	68
71	A recombinant Semliki Forest virus particle vaccine encoding the prME and NS1 proteins of louping ill virus is effective in a sheep challenge model. Vaccine, 2001, 19, 3877-3884.	3.8	20
72	Selfâ€Replicative RNA Vaccines Elicit Protection against Influenza A Virus, Respiratory Syncytial Virus, and a Tickborne Encephalitis Virus. Journal of Infectious Diseases, 2001, 183, 1395-1398.	4.0	134

#	Article	IF	CITATIONS
73	Alphavirus vectors: from protein production to gene therapy. Gene Therapy and Regulation, 2000, 1, 33-63.	0.3	8
74	Protection against respiratory syncytial virus (RSV) elicited in mice by plasmid DNA immunisation encoding a secreted RSV G protein-derived antigen. FEMS Immunology and Medical Microbiology, 2000, 29, 247-253.	2.7	1
75	Recombinant Semliki Forest virus particles expressing louping ill virus antigens induce a better protective response than plasmid-based DNA vaccines or an inactivated whole particle vaccine. Journal of General Virology, 2000, 81, 749-758.	2.9	56
76	Immunization with recombinant Semliki Forest virus induces protection against influenza challenge in mice. Vaccine, 1999, 17, 497-507.	3.8	101
77	The molecular pathogenesis of Semliki Forest virus: a model virus made useful?. Journal of General Virology, 1999, 80, 2287-2297.	2.9	78
78	Enhancing immune responses using suicidal DNA vaccines. Nature Biotechnology, 1998, 16, 562-565.	17.5	225
79	Role of the C-terminal tryptophan residue for the structure-function of the alphavirus capsid protein. Journal of Molecular Biology, 1998, 279, 865-872.	4.2	31
80	Outcome of Immunization of Cynomolgus Monkeys with Recombinant Semliki Forest Virus Encoding Human Immunodeficiency Virus Type 1 Envelope Protein and Challenge with a High Dose of SHIV-4 Virus. AIDS Research and Human Retroviruses, 1997, 13, 1487-1495.	1.1	133
81	Alphavirus expression vectors and their use as recombinant vaccines: a minireview. Gene, 1997, 190, 191-195.	2.2	64
82	Budding of enveloped viruses from the plasma membrane. BioEssays, 1997, 19, 993-1000.	2.5	28
83	Alphaviruses as vectors for gene delivery. Trends in Biotechnology, 1996, 14, 130-134.	9.3	39
84	Manipulation of the Semliki Forest virus genome and its potential for vaccine construction. Molecular Biotechnology, 1996, 5, 33-38.	2.4	14
85	Aromatic interactions define the binding of the alphavirus spike to its nucleocapsid. Structure, 1996, 4, 519-529.	3.3	112
86	High-Level Expression of G Protein-Coupled Receptors with the Aid of the Semliki Forest Virus Expression System. Journal of Receptor and Signal Transduction Research, 1995, 15, 23-32.	2.5	28
87	Alphavirus expression systems. Current Opinion in Biotechnology, 1994, 5, 495-500.	6.6	59
88	High-level Expression of the Human Neurokinin-1 Receptor in Mammalian Cell Lines using the Semliki Forest Virus Expression System. FEBS Journal, 1994, 224, 917-921.	0.2	90
89	Semliki Forest Virus Expression System: Production of Conditionally Infectious Recombinant Particles. Nature Biotechnology, 1993, 11, 916-920.	17.5	242
90	Plasminogen-activator inhibitor type 2 (PAI-2) is a spontaneously polymerising SERPIN. Biochemical characterisation of the recombinant intracellular and extracellular forms. FEBS Journal, 1993, 218, 1071-1082.	0.2	68

#	Article	IF	CITATIONS
91	Overview: Virally Based Transient Expression Systems. Current Opinion in Therapeutic Patents, 1993, 3, 375-402.	0.0	3
92	A New Generation of Animal Cell Expression Vectors Based on the Semliki Forest Virus Replicon. Bio/technology, 1991, 9, 1356-1361.	1.5	858
93	Structure and expression of the ompB operon, the regulatory locus for the outer membrane porin regulon in Salmonella typhimurium LT-2. Journal of Molecular Biology, 1988, 201, 663-673.	4.2	67
94	In vivo transfer of chromosomal mutations onto multicopy plasmids by transduction with bacteriophage P1. Gene, 1985, 40, 241-246.	2.2	15
95	Cloning of the regulatory locus ompB of Salmonella typhimurium LT-2. Molecular Genetics and Genomics, 1982, 188, 184-189.	2.4	17
96	Cosmid cloning and transposon mutagenesis in Salmonella typhimurium using phage λ vehicles. Molecular Genetics and Genomics, 1981, 181, 153-157.	2.4	51