Clement Gilbert

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416195/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The diversity of endogenous viral elements in insects. Current Opinion in Insect Science, 2022, 49, 48-55.	4.4	22
2	First Evidence of Past and Present Interactions between Viruses and the Black Soldier Fly, Hermetia illucens. Viruses, 2022, 14, 1274.	3.3	5
3	Transposable Elements and the Evolution of Insects. Annual Review of Entomology, 2021, 66, 355-372.	11.8	64
4	Paleovirology. , 2021, , 79-86.		0
5	The discovery, distribution, and diversity of DNA viruses associated with <i>Drosophila melanogaster</i> in Europe. Virus Evolution, 2021, 7, veab031.	4.9	25
6	Draft nuclear genome and complete mitogenome of the Mediterranean corn borer, <i>Sesamia nonagrioides</i> , a major pest of maize. G3: Genes, Genomes, Genetics, 2021, 11, .	1.8	11
7	Monitoring Insect Transposable Elements in Large Double-Stranded DNA Viruses Reveals Host-to-Virus and Virus-to-Virus Transposition. Molecular Biology and Evolution, 2021, 38, 3512-3530.	8.9	8
8	Genome-Wide Patterns of Bracovirus Chromosomal Integration into Multiple Host Tissues during Parasitism. Journal of Virology, 2021, 95, e0068421.	3.4	6
9	No species-level losses of s2m suggests critical role in replication of SARS-related coronaviruses. Scientific Reports, 2021, 11, 16145.	3.3	15
10	Comparative Genomics of Strictly Vertically Transmitted, Feminizing Microsporidia Endosymbionts of Amphipod Crustaceans. Genome Biology and Evolution, 2021, 13, .	2.5	12
11	Chromosome-level genome assembly reveals homologous chromosomes and recombination in asexual rotifer <i>Adineta vaga</i> . Science Advances, 2021, 7, eabg4216.	10.3	30
12	Assessing the Impact of a Viral Infection on the Expression of Transposable Elements in the Cabbage Looper Moth (<i>Trichoplusia ni</i>). Genome Biology and Evolution, 2021, 13, .	2.5	2
13	Horizontal Transfer and Gene Loss Shaped the Evolution of Alpha-Amylases in Bilaterians. G3: Genes, Genomes, Genetics, 2020, 10, 709-719.	1.8	4
14	Characterization of a new case of XMLV (Bxv1) contamination in the human cell line Hep2 (clone 2B). Scientific Reports, 2020, 10, 16046.	3.3	1
15	Impact of transposable elements on genome size variation between two closely related crustacean species. Analytical Biochemistry, 2020, 600, 113770.	2.4	9
16	Horizontal transfer and evolution of transposable elements in vertebrates. Nature Communications, 2020, 11, 1362.	12.8	58
17	Wide spectrum and high frequency of genomic structural variation, including transposable elements, in large double-stranded DNA viruses. Virus Evolution, 2020, 6, vez060.	4.9	24
18	Sex chromosomes control vertical transmission of feminizing WolbachiaÂsymbionts in an isopod. PLoS Biology, 2019, 17, e3000438.	5.6	20

CLEMENT GILBERT

#	Article	IF	CITATIONS
19	The Genome of <i>Armadillidium vulgare</i> (Crustacea, Isopoda) Provides Insights into Sex Chromosome Evolution in the Context of Cytoplasmic Sex Determination. Molecular Biology and Evolution, 2019, 36, 727-741.	8.9	43
20	Global survey of mobile DNA horizontal transfer in arthropods reveals Lepidoptera as a prime hotspot. PLoS Genetics, 2019, 15, e1007965.	3.5	41
21	Genome sequencing reveals coinfection by multiple chikungunya virus genotypes in a recent outbreak in Brazil. PLoS Neglected Tropical Diseases, 2019, 13, e0007332.	3.0	21
22	Horizontal acquisition of transposable elements and viral sequences: patterns and consequences. Current Opinion in Genetics and Development, 2018, 49, 15-24.	3.3	109
23	Analyzing Horizontal Transfer of Transposable Elements on a Large Scale: Challenges and Prospects. BioEssays, 2018, 40, 1700177.	2.5	20
24	A Survey of Virus Recombination Uncovers Canonical Features of Artificial Chimeras Generated During Deep Sequencing Library Preparation. G3: Genes, Genomes, Genetics, 2018, 8, 1129-1138.	1.8	21
25	Pan-arthropod analysis reveals somatic piRNAs as an ancestral defence against transposable elements. Nature Ecology and Evolution, 2018, 2, 174-181.	7.8	214
26	Massive horizontal transfer of transposable elements in insects. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4721-4726.	7.1	184
27	Diversity and evolution of sex determination systems in terrestrial isopods. Scientific Reports, 2017, 7, 1084.	3.3	35
28	Untangling Heteroplasmy, Structure, and Evolution of an Atypical Mitochondrial Genome by PacBio Sequencing. Genetics, 2017, 207, 269-280.	2.9	17
29	Viruses as vectors of horizontal transfer of genetic material in eukaryotes. Current Opinion in Virology, 2017, 25, 16-22.	5.4	95
30	Evolutionary Significance of Wolbachia-to-Animal Horizontal Gene Transfer: Female Sex Determination and the f Element in the Isopod Armadillidium vulgare. Genes, 2017, 8, 186.	2.4	37
31	Continuous Influx of Genetic Material from Host to Virus Populations. PLoS Genetics, 2016, 12, e1005838.	3.5	63
32	Birth of a W sex chromosome by horizontal transfer of <i>Wolbachia</i> bacterial symbiont genome. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 15036-15041.	7.1	83
33	Comparative paleovirological analysis of crustaceans identifies multiple widespread viral groups. Mobile DNA, 2015, 6, 16.	3.6	22
34	Genomic context drives transcription of insertion sequences in the bacterial endosymbiont Wolbachia wVulC. Gene, 2015, 564, 81-86.	2.2	1
35	Remarkable Diversity of Endogenous Viruses in a Crustacean Genome. Genome Biology and Evolution, 2014, 6, 2129-2140.	2.5	50
36	Horizontal transfer of transposons between and within crustaceans and insects. Mobile DNA, 2014, 5, 4.	3.6	31

CLEMENT GILBERT

#	Article	IF	CITATIONS
37	Endogenous hepadnaviruses, bornaviruses and circoviruses in snakes. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20141122.	2.6	80
38	Population genomics supports baculoviruses as vectors of horizontal transfer of insect transposons. Nature Communications, 2014, 5, 3348.	12.8	97
39	Horizontal transfer of OC1 transposons in the Tasmanian devil. BMC Genomics, 2013, 14, 134.	2.8	11
40	Horizontal Transfer and Evolution of Prokaryote Transposable Elements in Eukaryotes. Genome Biology and Evolution, 2013, 5, 822-832.	2.5	38
41	Rampant Horizontal Transfer of SPIN Transposons in Squamate Reptiles. Molecular Biology and Evolution, 2012, 29, 503-515.	8.9	55
42	Cargo capacity of phages and plasmids and other factors influencing horizontal transfers of prokaryote transposable elements. Mobile Genetic Elements, 2012, 2, 115-118.	1.8	12
43	Endogenous viruses: insights into viral evolution and impact on host biology. Nature Reviews Genetics, 2012, 13, 283-296.	16.3	721
44	A cross-species comparison of escape from X inactivation in Eutheria: implications for evolution of X chromosome inactivation. Chromosoma, 2012, 121, 71-78.	2.2	30
45	Evolution from XIST-Independent to XIST-Controlled X-Chromosome Inactivation: Epigenetic Modifications in Distantly Related Mammals. PLoS ONE, 2011, 6, e19040.	2.5	61
46	First karyotypic descriptions of Malagasy rodents (Nesomyinae, Muridae) reveal variation at multiple taxonomic levels. Journal of Zoology, 2011, 285, 110-118.	1.7	4
47	A role for host–parasite interactions in the horizontal transfer of transposons across phyla. Nature, 2010, 464, 1347-1350.	27.8	231
48	Promiscuous DNA: horizontal transfer of transposable elements and why it matters for eukaryotic evolution. Trends in Ecology and Evolution, 2010, 25, 537-546.	8.7	427
49	Genomic Fossils Calibrate the Long-Term Evolution of Hepadnaviruses. PLoS Biology, 2010, 8, e1000495.	5.6	126
50	HorizontalSPINning of transposons. Communicative and Integrative Biology, 2009, 2, 117-119.	1.4	14
51	Parallel Germline Infiltration of a Lentivirus in Two Malagasy Lemurs. PLoS Genetics, 2009, 5, e1000425.	3.5	96
52	Physical mapping of the elephant X chromosome: conservation of gene order over 105Âmillion years. Chromosome Research, 2009, 17, 917-926.	2.2	62
53	Chromosome evolution in the subtribe Bovina (Mammalia, Bovidae): The karyotype of the Cambodian banteng (Bos javanicus birmanicus) suggests that Robertsonian translocations are related to interspecific hybridization. Chromosome Research, 2008, 16, 1107-1118.	2.2	29

 $_{54}$ Chromosomal evolution and distribution of telomeric repeats in golden moles (Chrysochloridae,) Tj ETQq0 0 0 rgBT/Overlock 10 Tf 50 6

CLEMENT GILBERT

#	Article	IF	CITATIONS
55	Target site analysis of RTE1_LA and its AfroSINE partner in the elephant genome. Gene, 2008, 425, 1-8.	2.2	8
56	Repeated horizontal transfer of a DNA transposon in mammals and other tetrapods. Proceedings of the United States of America, 2008, 105, 17023-17028.	7.1	189
57	Chromosomal evolution in tenrecs (Microgale and Oryzorictes, Tenrecidae) from the Central Highlands of Madagascar. Chromosome Research, 2007, 15, 1075-1091.	2.2	9
58	Mitochondrial and nuclear phylogenies of Cervidae (Mammalia, Ruminantia): Systematics, morphology, and biogeography. Molecular Phylogenetics and Evolution, 2006, 40, 101-117.	2.7	229
59	Chromosome painting and molecular dating indicate a low rate of chromosomal evolution in golden moles (Mammalia, Chrysochloridae). Chromosome Research, 2006, 14, 793-803.	2.2	15