
Frédéric Hai-Trieu Allain

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3416133/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The RNA recognition motif, a plastic RNAâ€binding platform to regulate postâ€transcriptional gene expression. FEBS Journal, 2005, 272, 2118-2131.	4.7	901
2	Gac/Rsm signal transduction pathway of γâ€proteobacteria: from RNA recognition to regulation of social behaviour. Molecular Microbiology, 2008, 67, 241-253.	2.5	487
3	SRSF2 Mutations Contribute to Myelodysplasia by Mutant-Specific Effects on Exon Recognition. Cancer Cell, 2015, 27, 617-630.	16.8	449
4	Structure of PTB Bound to RNA: Specific Binding and Implications for Splicing Regulation. Science, 2005, 309, 2054-2057.	12.6	392
5	NMR investigation of RNA structure. Progress in Nuclear Magnetic Resonance Spectroscopy, 1996, 29, 51-127.	7.5	332
6	Structure of the P1 Helix from Group I Self-splicing Introns. Journal of Molecular Biology, 1995, 250, 333-353.	4.2	298
7	Molecular basis of UG-rich RNA recognition by the human splicing factor TDP-43. Nature Structural and Molecular Biology, 2013, 20, 1443-1449.	8.2	293
8	SRSF1-Regulated Alternative Splicing in Breast Cancer. Molecular Cell, 2015, 60, 105-117.	9.7	290
9	Sequence-specific binding of single-stranded RNA: is there a code for recognition?. Nucleic Acids Research, 2006, 34, 4943-4959.	14.5	265
10	Specificity of ribonucleoprotein interaction determined by RNA folding during complex formation. Nature, 1996, 380, 646-650.	27.8	260
11	The YTH Domain Is a Novel RNA Binding Domain. Journal of Biological Chemistry, 2010, 285, 14701-14710.	3.4	226
12	Molecular basis of RNA recognition by the human alternative splicing factor Fox-1. EMBO Journal, 2006, 25, 163-173.	7.8	215
13	The Solution Structure of the ADAR2 dsRBM-RNA Complex Reveals a Sequence-Specific Readout of the Minor Groove. Cell, 2010, 143, 225-237.	28.9	212
14	Molecular basis of messenger RNA recognition by the specific bacterial repressing clamp RsmA/CsrA. Nature Structural and Molecular Biology, 2007, 14, 807-813.	8.2	194
15	RNA recognition by double-stranded RNA binding domains: a matter of shape and sequence. Cellular and Molecular Life Sciences, 2013, 70, 1875-95.	5.4	189
16	Structural basis of the non-coding RNA RsmZ acting as a protein sponge. Nature, 2014, 509, 588-592.	27.8	189
17	Solution structure of the YTH domain in complex with N6-methyladenosine RNA: a reader of methylated RNA. Nucleic Acids Research, 2014, 42, 13911-13919.	14.5	187
18	RRM–RNA recognition: NMR or crystallography…and new findings. Current Opinion in Structural Biology, 2013, 23, 100-108.	5.7	171

#	Article	IF	CITATIONS
19	Solution Structure of the N-terminal RNP Domain of U1A Protein: The Role of C-terminal Residues in Structure Stability and RNA Binding. Journal of Molecular Biology, 1996, 257, 398-411.	4.2	170
20	Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding. EMBO Journal, 1999, 18, 2563-2579.	7.8	167
21	Binding to SMN2 pre-mRNA-protein complex elicits specificity for small molecule splicing modifiers. Nature Communications, 2017, 8, 1476.	12.8	155
22	RNA sequence―and shapeâ€dependent recognition by proteins in the ribonucleoprotein particle. EMBO Reports, 2005, 6, 33-38.	4.5	154
23	The Solution Structure of FUS Bound to RNA Reveals a Bipartite Mode of RNA Recognition with Both Sequence and Shape Specificity. Molecular Cell, 2019, 73, 490-504.e6.	9.7	151
24	Molecular basis for temperature sensing by an RNA thermometer. EMBO Journal, 2006, 25, 2487-2497.	7.8	150
25	Molecular basis of RNA recognition and TAP binding by the SR proteins SRp20 and 9G8. EMBO Journal, 2006, 25, 5126-5137.	7.8	140
26	Structural basis of G-tract recognition and encaging by hnRNP F quasi-RRMs. Nature Structural and Molecular Biology, 2010, 17, 853-861.	8.2	132
27	The Phosphoglucan Phosphatase Like Sex Four2 Dephosphorylates Starch at the C3-Position in <i>Arabidopsis</i> Â Â. Plant Cell, 2011, 23, 4096-4111.	6.6	119
28	A <i>syn</i> - <i>anti</i> conformational difference allows SRSF2 to recognize guanines and cytosines equally well. EMBO Journal, 2012, 31, 162-174.	7.8	116
29	Solution structure of the loop B domain from the hairpin ribozyme. Nature Structural Biology, 1999, 6, 212-216.	9.7	113
30	The S.cerevisiae Architectural HMGB Protein NHP6A Complexed with DNA: DNA and Protein Conformational Changes upon Binding. Journal of Molecular Biology, 2002, 323, 263-284.	4.2	112
31	Structural basis of pre-let-7 miRNA recognition by the zinc knuckles of pluripotency factor Lin28. Nature Structural and Molecular Biology, 2012, 19, 84-89.	8.2	111
32	Isolated pseudo–RNA-recognition motifs of SR proteins can regulate splicing using a noncanonical mode of RNA recognition. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E2802-11.	7.1	109
33	Divalent metal ion binding to a conserved wobble pair defining the upstream site of cleavage of group I self-splicing introns. Nucleic Acids Research, 1995, 23, 341-350.	14.5	105
34	Shape-specific recognition in the structure of the Vts1p SAM domain with RNA. Nature Structural and Molecular Biology, 2006, 13, 160-167.	8.2	102
35	Structure and Specific RNA Binding of ADAR2 Double-Stranded RNA Binding Motifs. Structure, 2006, 14, 345-355.	3.3	101
36	Molecular basis of purine-rich RNA recognition by the human SR-like protein Tra2-β1. Nature Structural and Molecular Biology, 2011, 18, 443-450.	8.2	99

#	Article	IF	CITATIONS
37	RNA looping by PTB: Evidence using FRET and NMR spectroscopy for a role in splicing repression. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 4105-4110.	7.1	96
38	EPR-aided approach for solution structure determination of large RNAs or protein–RNA complexes. Nature Communications, 2014, 5, 3669.	12.8	96
39	RNAâ€PROTACs: Degraders of RNAâ€Binding Proteins. Angewandte Chemie - International Edition, 2021, 60, 3163-3169.	13.8	95
40	Structure determination and dynamics of protein–RNA complexes by NMR spectroscopy. Progress in Nuclear Magnetic Resonance Spectroscopy, 2011, 58, 1-61.	7.5	91
41	Structural basis of a small molecule targeting RNA for a specific splicing correction. Nature Chemical Biology, 2019, 15, 1191-1198.	8.0	89
42	Structure of the two most C-terminal RNA recognition motifs of PTB using segmental isotope labeling. EMBO Journal, 2006, 25, 150-162.	7.8	85
43	NMR structure of the three quasi RNA recognition motifs (qRRMs) of human hnRNP F and interaction studies with Bcl-x G-tract RNA: a novel mode of RNA recognition. Nucleic Acids Research, 2006, 34, 3634-3645.	14.5	85
44	Interplay between the catabolite repression control protein Crc, Hfq and RNA in Hfq-dependent translational regulation in Pseudomonas aeruginosa. Nucleic Acids Research, 2018, 46, 1470-1485.	14.5	85
45	The testisâ€specific human protein RBMY recognizes RNA through a novel mode of interaction. EMBO Reports, 2007, 8, 372-379.	4.5	84
46	How accurately and precisely can RNA structure be determined by NMR?. Journal of Molecular Biology, 1997, 267, 338-351.	4.2	82
47	U1 snRNA Directly Interacts with Polypyrimidine Tract-Binding Protein during Splicing Repression. Molecular Cell, 2011, 41, 579-588.	9.7	82
48	Structural basis for â´'10 promoter element melting by environmentally induced sigma factors. Nature Structural and Molecular Biology, 2014, 21, 269-276.	8.2	82
49	Recent advances in segmental isotope labeling of proteins: NMR applications to large proteins and glycoproteins. Journal of Biomolecular NMR, 2010, 46, 51-65.	2.8	81
50	A distinct structural region of the prokaryotic ubiquitinâ€like protein (Pup) is recognized by the Nâ€ŧerminal domain of the proteasomal ATPase Mpa. FEBS Letters, 2009, 583, 3151-3157.	2.8	80
51	Molecular basis for the wide range of affinity found in Csr/Rsm protein–RNA recognition. Nucleic Acids Research, 2014, 42, 5332-5346.	14.5	77
52	A fast, efficient and sequence-independent method for flexible multiple segmental isotope labeling of RNA using ribozyme and RNase H cleavage. Nucleic Acids Research, 2010, 38, e188-e188.	14.5	75
53	A fly trap mechanism provides sequence-specific RNA recognition by CPEB proteins. Genes and Development, 2014, 28, 1498-1514.	5.9	74
54	NMR Structure Determination of a Segmentally Labeled Glycoprotein Using in Vitro Glycosylation. Journal of the American Chemical Society, 2009, 131, 1274-1281.	13.7	72

#	Article	IF	CITATIONS
55	Structural basis for sulfation-dependent self-glycan recognition by the human immune-inhibitory receptor Siglec-8. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E4170-9.	7.1	72
56	Tandem hnRNP A1 RNA recognition motifs act in concert to repress the splicing of survival motor neuron exon 7. ELife, 2017, 6, .	6.0	72
57	A bimodular nuclear localization signal assembled via an extended double-stranded RNA-binding domain acts as an RNA-sensing signal for transportin 1. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, E1852-61.	7.1	70
58	Specific inhibition of splicing factor activity by decoy RNA oligonucleotides. Nature Communications, 2019, 10, 1590.	12.8	70
59	Solution structure of the two N-terminal RNA-binding domains of nucleolin and NMR study of the interaction with its RNA target. Journal of Molecular Biology, 2000, 303, 227-241.	4.2	69
60	Molecular basis for AU-rich element recognition and dimerization by the HuR C-terminal RRM. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116, 2935-2944.	7.1	69
61	Plasticity of the β-Trefoil Protein Fold in the Recognition and Control of Invertebrate Predators and Parasites by a Fungal Defence System. PLoS Pathogens, 2012, 8, e1002706.	4.7	65
62	Stabilization of Branched Oligosaccharides: Lewis ^x Benefits from a Nonconventional C–H···O Hydrogen Bond. Journal of the American Chemical Society, 2013, 135, 13464-13472.	13.7	65
63	NMR and EPR reveal a compaction of the RNA-binding protein FUS upon droplet formation. Nature Chemical Biology, 2021, 17, 608-614.	8.0	63
64	Prokaryotic Ubiquitin-like Protein (Pup) Is Coupled to Substrates via the Side Chain of Its C-Terminal Glutamate. Journal of the American Chemical Society, 2010, 132, 5610-5612.	13.7	62
65	Structural and Mechanistic Insights into Poly(uridine) Tract Recognition by the hnRNPÂC RNA Recognition Motif. Journal of the American Chemical Society, 2014, 136, 14536-14544.	13.7	62
66	Solution structure of the two RNA recognition motifs of hnRNP A1 using segmental isotope labeling: how the relative orientation between RRMs influences the nucleic acid binding topology. Journal of Biomolecular NMR, 2013, 55, 119-138.	2.8	61
67	Conformation of Polypyrimidine Tract Binding Protein in Solution. Structure, 2006, 14, 1021-1027.	3.3	60
68	Recognition of Pre-formed and Flexible Elements of an RNA Stem-Loop by Nucleolin. Journal of Molecular Biology, 2001, 309, 763-775.	4.2	58
69	Solving the Structure of PTB in Complex with Pyrimidine Tracts: An NMR Study of Protein–RNA Complexes of Weak Affinitiesâ€. Journal of Molecular Biology, 2007, 367, 174-186.	4.2	58
70	Improved Segmental Isotope Labeling Methods for the NMR Study of Multidomain or Large Proteins: Application to the RRMs of Npl3p and hnRNP L. Journal of Molecular Biology, 2008, 375, 151-164.	4.2	57
71	Extra Cytoplasmic Function sigma factors, recent structural insights into promoter recognition and regulation. Current Opinion in Structural Biology, 2015, 30, 71-78.	5.7	52
72	Structural basis for sigma factor mimicry in the general stress response of Alphaproteobacteria. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, E1405-14.	7.1	49

#	Article	IF	CITATIONS
73	The high kinetic stability of a G-quadruplex limits hnRNP F qRRM3 binding to G-tract RNA. Nucleic Acids Research, 2013, 41, 2505-2516.	14.5	48
74	Characterization of the RNA recognition mode of hnRNP G extends its role in SMN2 splicing regulation. Nucleic Acids Research, 2014, 42, 6659-6672.	14.5	47
75	Aberrant interaction of FUS with the U1 snRNA provides a molecular mechanism of FUS induced amyotrophic lateral sclerosis. Nature Communications, 2020, 11, 6341.	12.8	47
76	Isotope Labeling and Segmental Labeling of Larger RNAs for NMR Structural Studies. Advances in Experimental Medicine and Biology, 2012, 992, 121-144.	1.6	46
77	An extended dsRBD with a novel zinc-binding motif mediates nuclear retention of fission yeast Dicer. EMBO Journal, 2011, 30, 4223-4235.	7.8	45
78	Systematic mapping of proteinâ€metabolite interactions in central metabolism of <i>Escherichia coli</i> . Molecular Systems Biology, 2019, 15, e9008.	7.2	45
79	Structural modeling of protein–RNA complexes using crosslinking of segmentally isotope-labeled RNA and MS/MS. Nature Methods, 2017, 14, 487-490.	19.0	44
80	Structural basis of si <scp>RNA</scp> recognition by <scp>TRBP</scp> doubleâ€stranded <scp>RNA</scp> binding domains. EMBO Journal, 2018, 37, .	7.8	43
81	High-Resolution Structural Analysis Shows How Tah1 Tethers Hsp90 to the R2TP Complex. Structure, 2013, 21, 1834-1847.	3.3	42
82	Automated and assisted RNA resonance assignment using NMR chemical shift statistics. Nucleic Acids Research, 2013, 41, e172-e172.	14.5	42
83	NMR structure of the apoB mRNA stem-loop and its interaction with the C to U editing APOBEC1 complementary factor. Rna, 2005, 11, 173-186.	3.5	39
84	Structure of SRSF1 RRM1 bound to RNA reveals an unexpected bimodal mode of interaction and explains its involvement in SMN1 exon7 splicing. Nature Communications, 2021, 12, 428.	12.8	37
85	Exonâ€independent recruitment of SRSF1 is mediated by U1 snRNP stemâ€loop 3. EMBO Journal, 2022, 41, e107640.	7.8	37
86	Short, synthetic and selectively 13C-labeled RNA sequences for the NMR structure determination of protein-RNA complexes. Nucleic Acids Research, 2006, 34, e79-e79.	14.5	34
87	Novel three-dimensional 1H?13C?31P triple resonance experiments for sequential backbone correlations in nucleic acids. Journal of Biomolecular NMR, 1995, 5, 315-20.	2.8	33
88	A strong 13C chemical shift signature provides the coordination mode of histidines in zinc-binding proteins. Journal of Biomolecular NMR, 2012, 53, 93-101.	2.8	32
89	A Secondary Structural Element in a Wide Range of Fucosylated Glycoepitopes. Chemistry - A European Journal, 2017, 23, 11598-11610.	3.3	32
90	Sedimentation Yields Long-Term Stable Protein Samples as Shown by Solid-State NMR. Frontiers in Molecular Biosciences, 2020, 7, 17.	3.5	32

Frédéric Hai-Trieu Allain

#	Article	IF	CITATIONS
91	Solution Structure and Activation Mechanism of Ubiquitin-Like Small Archaeal Modifier Proteins. Journal of Molecular Biology, 2011, 405, 1040-1055.	4.2	29
92	A procedure to validate and correct the 13C chemical shift calibration of RNA datasets. Journal of Biomolecular NMR, 2012, 52, 179-190.	2.8	29
93	Evidence for cooperative tandem binding of hnRNP C RRMs in mRNA processing. Rna, 2015, 21, 1931-1942.	3.5	29
94	A novel RNA pentaloop fold involved in targeting ADAR2. Rna, 2005, 11, 592-597.	3.5	26
95	Modularity and determinants of a (bi-)polarization control system from free-living and obligate intracellular bacteria. ELife, 2016, 5, .	6.0	26
96	Determination of the NMR structure of the complex between U1A protein and its RNA polyadenylation inhibition element. Journal of Biomolecular NMR, 1998, 11, 59-84.	2.8	25
97	The Signature of the Five-Stranded vRRM Fold Defined by Functional, Structural and Computational Analysis of the hnRNP L Protein. Journal of Molecular Biology, 2015, 427, 3001-3022.	4.2	25
98	Amino Acidâ€ S elective Segmental Isotope Labeling of Multidomain Proteins for Structural Biology. ChemBioChem, 2013, 14, 457-466.	2.6	24
99	Aromatic side-chain conformational switch on the surface of the RNA Recognition Motif enables RNA discrimination. Nature Communications, 2017, 8, 654.	12.8	23
100	Structural biology of RNA-binding proteins in the context of phase separation: What NMR and EPR can bring?. Current Opinion in Structural Biology, 2021, 70, 132-138.	5.7	23
101	A Small Helical Bundle Prepares Primer Synthesis by Binding Two Nucleotides that Enhance Sequence-Specific Recognition of the DNA Template. Cell, 2019, 176, 154-166.e13.	28.9	22
102	Increase in Backbone Mobility of the VTS1p-SAM Domain on Binding to SRE–RNA. Journal of Molecular Biology, 2010, 396, 732-746.	4.2	21
103	Resolving distance variations by single-molecule FRET and EPR spectroscopy using rotamer libraries. Biophysical Journal, 2021, 120, 4842-4858.	0.5	21
104	Novel Enzymatic Activity Derived from the Semliki Forest Virus Capsid Protein. Journal of Molecular Biology, 2008, 376, 721-735.	4.2	20
105	Cut and Paste RNA for Nuclear Magnetic Resonance, Paramagnetic Resonance Enhancement, and Electron Paramagnetic Resonance Structural Studies. Methods in Enzymology, 2015, 565, 537-562.	1.0	20
106	Systematic Identification of Protein–Metabolite Interactions in Complex Metabolite Mixtures by Ligand-Detected Nuclear Magnetic Resonance Spectroscopy. Biochemistry, 2016, 55, 2590-2600.	2.5	20
107	Control of the polyamine biosynthesis pathway by G2-quadruplexes. ELife, 2018, 7, .	6.0	20
108	Changes in Dynamics of SRE-RNA on Binding to the VTS1p-SAM Domain Studied by ¹³ C NMR Relaxation. Journal of the American Chemical Society, 2008, 130, 12007-12020.	13.7	18

Frédéric Hai-Trieu Allain

#	Article	IF	CITATIONS
109	Solution structure of the N-terminal dsRBD of Drosophila ADAR and interaction studies with RNA. Biochimie, 2012, 94, 1499-1509.	2.6	18
110	Selective Amino Acid Segmental Labeling of Multi-Domain Proteins. Methods in Enzymology, 2015, 565, 389-422.	1.0	18
111	Segmental isotope labelling and solid-state NMR of a 12 × 59ÂkDa motor protein: identification of structural variability. Journal of Biomolecular NMR, 2018, 71, 237-245.	2.8	18
112	Sequence-specific RNA recognition by an RGG motif connects U1 and U2 snRNP for spliceosome assembly. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, .	7.1	18
113	Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. Nature Communications, 2018, 9, 3669.	12.8	17
114	Systems NMR: single-sample quantification of RNA, proteins and metabolites for biomolecular network analysis. Nature Methods, 2019, 16, 743-749.	19.0	17
115	A transient α-helix in the N-terminal RNA recognition motif of polypyrimidine tract binding protein senses RNA secondary structure. Nucleic Acids Research, 2020, 48, 4521-4537.	14.5	16
116	How a rotavirus hijacks the human protein synthesis machinery. Nature Structural Biology, 2002, 9, 158-160.	9.7	15
117	Recognition of N6-Methyladenosine by the YTHDC1 YTH Domain Studied by Molecular Dynamics and NMR Spectroscopy: The Role of Hydration. Journal of Physical Chemistry B, 2021, 125, 7691-7705.	2.6	15
118	Nucleotide-amino acid π-stacking interactions initiate photo cross-linking in RNA-protein complexes. Nature Communications, 2022, 13, 2719.	12.8	15
119	Role of the PFXFATG[G/Y] Motif in the Activation of SdrG, a Response Regulator Involved in the Alphaproteobacterial General Stress Response. Structure, 2016, 24, 1237-1247.	3.3	14
120	Comparative analyses of the thermodynamic RNA binding signatures of different types of RNA recognition motifs. Nucleic Acids Research, 2017, 45, 6037-6050.	14.5	14
121	Protein Side-Chain–DNA Contacts Probed by Fast Magic-Angle Spinning NMR. Journal of Physical Chemistry B, 2020, 124, 11089-11097.	2.6	13
122	RNAâ€₽ROTACs: Degraders of RNAâ€Binding Proteins. Angewandte Chemie, 2021, 133, 3200-3206.	2.0	12
123	An <i>in vitro</i> reconstituted U1 snRNP allows the study of the disordered regions of the particle and the interactions with proteins and ligands. Nucleic Acids Research, 2021, 49, e63-e63.	14.5	12
124	Characterization of Weak Protein Domain Structure by Spin-Label Distance Distributions. Frontiers in Molecular Biosciences, 2021, 8, 636599.	3.5	12
125	Inosine Substitutions in RNA Activate Latent G-Quadruplexes. Journal of the American Chemical Society, 2021, 143, 15120-15130.	13.7	12
126	Structural and functional implications of the QUA2 domain on RNA recognition by GLD-1. Nucleic Acids Research, 2014, 42, 8092-8105.	14.5	11

#	Article	IF	CITATIONS
127	Combining Mass Spectrometry (MS) and Nuclear Magnetic Resonance (NMR) Spectroscopy for Integrative Structural Biology of Protein–RNA Complexes. Cold Spring Harbor Perspectives in Biology, 2019, 11, a032359.	5.5	11
128	Structures to complement the archaeo-eukaryotic primases catalytic cycle description: What's next?. Computational and Structural Biotechnology Journal, 2015, 13, 339-351.	4.1	10
129	A conserved motif in human BTG1 and BTG2 proteins mediates interaction with the poly(A) binding protein PABPC1 to stimulate mRNA deadenylation. RNA Biology, 2021, 18, 2450-2465.	3.1	10
130	Single Nucleotide Resolution RNA–Protein Cross-Linking Mass Spectrometry: A Simple Extension of the CLIR-MS Workflow. Analytical Chemistry, 2021, 93, 14626-14634.	6.5	10
131	Combining NMR Spectroscopy and Molecular Dynamic Simulations to Solve and Analyze the Structure of Protein–RNA Complexes. Methods in Enzymology, 2019, 614, 393-422.	1.0	9
132	Solution and crystal structures of a C-terminal fragment of the neuronal isoform of the polypyrimidine tract binding protein (nPTB). PeerJ, 2014, 2, e305.	2.0	9
133	NMR Spectroscopy: An Excellent Tool to Understand RNA and Carbohydrate Recognition by Proteins. Chimia, 2012, 66, 741.	0.6	8
134	Recent advances in understanding bacterial and archaeoeukaryotic primases. Current Opinion in Structural Biology, 2019, 59, 159-167.	5.7	8
135	Use of 13C,15N-Labeled DNA in a Non-Sequence-Specific Proteinâ^'DNA Complex Resolves Ambiguous Assignments of Intermolecular NOEs. Journal of the American Chemical Society, 1999, 121, 3547-3548.	13.7	7
136	Single-Stranded Nucleic Acid Recognition: Is There a Code after All?. Structure, 2013, 21, 4-6.	3.3	6
137	RNA modification does a regulatory two-step. Nature, 2015, 518, 492-493.	27.8	6
138	MINA-1 and WAGO-4 are part of regulatory network coordinating germ cell death and RNAi in C. elegans. Cell Death and Differentiation, 2019, 26, 2157-2178.	11.2	6
139	Letter to the Editor: Resonance assignments of the double-stranded RNA-binding of adenosine deaminase acting on RNA 2 (ADAR2). Journal of Biomolecular NMR, 2005, 31, 71-72.	2.8	5
140	Functional Siglec lectin domains from soluble expression in the cytoplasm of Escherichia coli. Protein Expression and Purification, 2015, 109, 14-22.	1.3	5
141	Resonance Assignments of the Two N-terminal RNA Recognition Motifs (RRM) of the Human Heterogeneous Nuclear Ribonucleoprotein F (HnRNP F). Journal of Biomolecular NMR, 2005, 33, 282-282.	2.8	3
142	An Integrated Cell-Free Assay to Study Translation Regulation by Small Bacterial Noncoding RNAs. Methods in Molecular Biology, 2018, 1737, 177-195.	0.9	3
143	A Step-by-Step Guide to Study Protein–RNA Interactions. Chimia, 2019, 73, 406.	0.6	2
144	Editorial overview: Nucleic acids and their protein complexes: Progress in nucleic acid structural biology: new technologies and discoveries. Current Opinion in Structural Biology, 2015, 30, vii-viii.	5.7	0

#	Article	IF	CITATIONS
145	Editorial overview: Protein–nucleic acid interactions – cryo-EM, what else?. Current Opinion in Structural Biology, 2019, 59, vi-viii.	5.7	0