List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415696/publications.pdf Version: 2024-02-01

	RTICLE	IF	CITATIONS
	uantification of CD4 Recovery in Early-Treated Infants Living With HIV. Journal of Acquired Immune eficiency Syndromes (1999), 2022, 89, 546-557.	2.1	4
2 Tu 2 Ce	rrnover of Murine Cytomegalovirus–Expanded CD8+ T Cells Is Similar to That of Memory Phenotype T ells and Independent of the Magnitude of the Response. Journal of Immunology, 2022, 208, 799-806.	0.8	4
3 Re Na	eplicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. ature Immunology, 2022, 23, 791-801.	14.5	30
	ell-density independent increased lymphocyte production and loss rates post-autologous HSCT. ELife, 021, 10, .	6.0	9
5 Lo Bio	cal actin dynamics couple speed and persistence in a cellular Potts model of cell migration. ophysical Journal, 2021, 120, 2609-2622.	0.5	28
	rtotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nature ommunications, 2021, 12, 5217.	12.8	99
7 TC Na	CRÎ ² rearrangements without a D segment are common, abundant, and public. Proceedings of the ational Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
8 Th Cc	e limitations, dangers, and benefits of simple methods for testing identifiability. PLoS omputational Biology, 2021, 17, e1009425.	3.2	0
9 He	ematopoiesis in numbers. Trends in Immunology, 2021, 42, 1100-1112.	6.8	25
10 Qu Pa	uantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS thogens, 2021, 17, e1010152.	4.7	10
	naracterization of the ferret TRB locus guided by V, D, J, and C gene expression analysis. Imunogenetics, 2020, 72, 101-108.	2.4	14
	uantifying the Dynamics of HIV Decline in Perinatally Infected Neonates on Antiretroviral Therapy. urnal of Acquired Immune Deficiency Syndromes (1999), 2020, 85, 209-218.	2.1	5
13 C≻ Fre	KCL4 Links Inflammation and Fibrosis by Reprogramming Monocyte-Derived Dendritic Cells in vitro. ontiers in Immunology, 2020, 11, 2149.	4.8	26
14 ls	T Cell Negative Selection a Learning Algorithm?. Cells, 2020, 9, 690.	4.1	11
15 Pe	ne to Viral Suppression in Perinatally HIV-Infected Infants Depends on the Viral Load and CD4 T-Cell rrcentage at the Start of Treatment. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 8, 522-529.	2.1	7
16 Te el	sting structural identifiability by a simple scaling method. PLoS Computational Biology, 2020, 16, 008248.	3.2	31
17 Th	e naive T-cell receptor repertoire has an extremely broad distribution of clone sizes. ELife, 2020, 9, .	6.0	61

18 Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.

#	Article	IF	CITATIONS
19	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0
20	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0
21	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0
22	Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Computational Biology, 2019, 15, e1007333.	3.2	15
23	Local Attachment Explains Small World–like Properties of Fibroblastic Reticular Cell Networks in Lymph Nodes. Journal of Immunology, 2019, 202, 3318-3325.	0.8	4
24	Stochastic Inheritance of Division and Death Times Determines the Size and Phenotype of CD8+ T Cell Families. Frontiers in Immunology, 2019, 10, 436.	4.8	10
25	An evolutionary perspective on the systems of adaptive immunity. Biological Reviews, 2018, 93, 505-528.	10.4	76
26	Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment. Immunogenetics, 2018, 70, 87-97.	2.4	5
27	Current best estimates for the average lifespans of mouse and human leukocytes: reviewing two decades of deuterium″abeling experiments. Immunological Reviews, 2018, 285, 233-248.	6.0	40
28	Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells. Frontiers in Immunology, 2018, 9, 2054.	4.8	32
29	A Sigmoid Functional Response Emerges When Cytotoxic T Lymphocytes Start Killing Fresh TargetÂCells. Biophysical Journal, 2017, 112, 1221-1235.	0.5	14
30	How lymphocytes add up. Nature Immunology, 2017, 18, 12-13.	14.5	6
31	How Germinal Centers Evolve Broadly Neutralizing Antibodies: the Breadth of the Follicular Helper T Cell Response. Journal of Virology, 2017, 91, .	3.4	32
32	Circulatory and maturation kinetics of human monocyte subsets in vivo. Blood, 2017, 130, 1474-1477.	1.4	61
33	Dynamics of Recent Thymic Emigrants in Young Adult Mice. Frontiers in Immunology, 2017, 8, 933.	4.8	14
34	Cytokines and Chemokines Involved in Acute Retinal Necrosis. , 2017, 58, 2139.		31
35	The Reticular Cell Network: A Robust Backbone for Immune Responses. PLoS Biology, 2016, 14, e2000827.	5.6	28
36	Slowing Down of Recovery as Generic Risk Marker for Acute Severity Transitions in Chronic Diseases. Critical Care Medicine, 2016, 44, 601-606.	0.9	73

#	Article	IF	CITATIONS
37	Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells. Journal of Virology, 2016, 90, 7066-7083.	3.4	18
38	HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene. Scientific Reports, 2016, 5, 18088.	3.3	13
39	Long-term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition. Scientific Reports, 2016, 6, 33334.	3.3	27
40	RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data. Bioinformatics, 2016, 32, 3098-3106.	4.1	54
41	Quantifying the effect of Vpu on the promotion of HIV-1 replication in the humanized mouse model. Retrovirology, 2016, 13, 23.	2.0	20
42	The evolution of natural killer cell receptors. Immunogenetics, 2016, 68, 3-18.	2.4	91
43	Tissue Dimensionality Influences the Functional Response of Cytotoxic T Lymphocyte-Mediated Killing of Targets. Frontiers in Immunology, 2016, 7, 668.	4.8	14
44	Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS ONE, 2016, 11, e0152513.	2.5	10
45	Quantification of naive and memory T-cell turnover during HIV-1 infection. Aids, 2015, 29, 2071-2080.	2.2	28
46	Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?. Frontiers in Immunology, 2015, 6, 311.	4.8	11
47	Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration. PLoS Computational Biology, 2015, 11, e1004280.	3.2	70
48	The Branching Point in Erythro-Myeloid Differentiation. Cell, 2015, 163, 1655-1662.	28.9	146
49	What do mathematical models tell us about killing rates during HIV-1 infection?. Immunology Letters, 2015, 168, 1-6.	2.5	19
50	Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell, 2015, 14, 219-227.	6.7	76
51	A Coevolutionary Arms Race between Hosts and Viruses Drives Polymorphism and Polygenicity of NK Cell Receptors. Molecular Biology and Evolution, 2015, 32, 2149-2160.	8.9	16
52	Common myeloid progenitors are made up of distinct subpopulations that either yield erythrocytes or myeloid cells. Experimental Hematology, 2015, 43, S88.	0.4	0
53	Subtle CXCR3-Dependent Chemotaxis of CTLs within Infected Tissue Allows Efficient Target Localization. Journal of Immunology, 2015, 195, 5285-5295.	0.8	66
54	Optimal T cell cross-reactivity and the role of regulatory T cells. Journal of Theoretical Biology, 2015, 375, 4-12.	1.7	1

#	Article	IF	CITATIONS
55	Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments. PLoS Computational Biology, 2015, 11, e1004355.	3.2	17
56	Immuno-epidemiological Modeling of HIV-1 Predicts High Heritability of the Set-Point Virus Load, while Selection for CTL Escape Dominates Virulence Evolution. PLoS Computational Biology, 2014, 10, e1003899.	3.2	26
57	Quantifying the Protection of Activating and Inhibiting NK Cell Receptors during Infection with a CMV-Like Virus. Frontiers in Immunology, 2014, 5, 20.	4.8	11
58	Random Migration and Signal Integration Promote Rapid and Robust T Cell Recruitment. PLoS Computational Biology, 2014, 10, e1003752.	3.2	52
59	Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants. Retrovirology, 2014, 11, 56.	2.0	49
60	Determining Lineage Pathways from Cellular Barcoding Experiments. Cell Reports, 2014, 6, 617-624.	6.4	40
61	Combining cellular barcoding and mathematical modeling to infer the structure of the hematopoietic pathway. Experimental Hematology, 2014, 42, S56.	0.4	0
62	Improving the estimation of the death rate of infected cells from time course data during the acute phase of virus infections: application to acute HIV-1 infection in a humanized mouse model. Theoretical Biology and Medical Modelling, 2014, 11, 22.	2.1	13
63	A General Functional Response of Cytotoxic T Lymphocyte-Mediated Killing of Target Cells. Biophysical Journal, 2014, 106, 1780-1791.	0.5	50
64	Quantifying T lymphocyte turnover. Journal of Theoretical Biology, 2013, 327, 45-87.	1.7	207
65	Analytical results on the Beauchemin model of lymphocyte migration. BMC Bioinformatics, 2013, 14, S10.	2.6	7
66	A new model to simulate and analyze proliferating cell populations in BrdU labeling experiments. BMC Systems Biology, 2013, 7, S4.	3.0	7
67	Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature, 2013, 496, 229-232.	27.8	337
68	Heterogeneous Differentiation Patterns of Individual CD8 ⁺ T Cells. Science, 2013, 340, 635-639.	12.6	320
69	Polar auxin transport: models and mechanisms. Development (Cambridge), 2013, 140, 2253-2268.	2.5	105
70	Early divergence of Th1 and Th2 transcriptomes involves a small core response and sets of transiently expressed genes. European Journal of Immunology, 2013, 43, 1074-1084.	2.9	8
71	Immune Activation and Collateral Damage in AIDS Pathogenesis. Frontiers in Immunology, 2013, 4, 298.	4.8	59
72	Complementarity of Binding Motifs is a General Property of HLA-A and HLA-B Molecules and Does Not Seem to Effect HLA Haplotype Composition. Frontiers in Immunology, 2013, 4, 374.	4.8	5

#	Article	IF	CITATIONS
73	Virus Encoded MHC-Like Decoys Diversify the Inhibitory KIR Repertoire. PLoS Computational Biology, 2013, 9, e1003264.	3.2	20
74	A mechanistic model for bromodeoxyuridine dilution naturally explains labelling data of self-renewing T cell populations. Journal of the Royal Society Interface, 2013, 10, 20120617.	3.4	17
75	Antigen-Stimulated CD4 T Cell Expansion Can Be Limited by Their Grazing of Peptide–MHC Complexes. Journal of Immunology, 2013, 190, 5454-5458.	0.8	12
76	Induction of appropriate Th cell phenotypes: Cellular decision-making in heterogeneous environments. Parasite Immunology, 2013, 35, n/a-n/a.	1.5	7
77	The Rate of Immune Escape Vanishes When Multiple Immune Responses Control an HIV Infection. Journal of Immunology, 2013, 191, 3277-3286.	0.8	36
78	Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood, 2013, 122, 2205-2212.	1.4	106
79	Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire. PLoS Computational Biology, 2012, 8, e1002412.	3.2	73
80	Which of Our Modeling Predictions Are Robust?. PLoS Computational Biology, 2012, 8, e1002593.	3.2	30
81	Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens. PLoS Computational Biology, 2012, 8, e1002763.	3.2	37
82	Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3003-3010.	2.6	11
83	Modelling deuterium labelling of lymphocytes with temporal and/or kinetic heterogeneity. Journal of the Royal Society Interface, 2012, 9, 2191-2200.	3.4	22
84	Maintenance of Peripheral Naive T Cells Is Sustained by Thymus Output in Mice but Not Humans. Immunity, 2012, 36, 288-297.	14.3	482
85	Tissue-resident memory CD8 ⁺ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19739-19744.	7.1	230
86	A Generalized Mathematical Model To Estimate T- and B-Cell Receptor Diversities Using AmpliCot. Biophysical Journal, 2012, 103, 999-1010.	0.5	1
87	Cell division curtails helper phenotype plasticity and expedites helper T ell differentiation. Immunology and Cell Biology, 2012, 90, 860-868.	2.3	12
88	Identifying viral parameters from in vitro cell cultures. Frontiers in Microbiology, 2012, 3, 319.	3.5	33
89	Implications of CTL-Mediated Killing of HIV-Infected Cells during the Non-Productive Stage of Infection. PLoS ONE, 2011, 6, e16468.	2.5	43
90	Response: The in vivo half-life of human neutrophils. Blood, 2011, 117, 6053-6054.	1.4	32

#	Article	IF	CITATIONS
91	B cells within germinal centers migrate preferentially from dark to light zone. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8755-8760.	7.1	43
92	Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action. PLoS ONE, 2011, 6, e15959.	2.5	41
93	Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy. Molecular Systems Biology, 2010, 6, 348.	7.2	71
94	Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates. Blood, 2010, 116, 748-758.	1.4	28
95	Identification of helper T cell master regulator candidates using the polar score method. Journal of Immunological Methods, 2010, 361, 98-109.	1.4	7
96	In Mice, Tuberculosis Progression Is Associated with Intensive Inflammatory Response and the Accumulation of Gr-1dim Cells in the Lungs. PLoS ONE, 2010, 5, e10469.	2.5	69
97	Current Estimates for HIV-1 Production Imply Rapid Viral Clearance in Lymphoid Tissues. PLoS Computational Biology, 2010, 6, e1000906.	3.2	75
98	Explicit Kinetic Heterogeneity: Mathematical Models for Interpretation of Deuterium Labeling of Heterogeneous Cell Populations. PLoS Computational Biology, 2010, 6, e1000666.	3.2	33
99	Quantifying how MHC polymorphism prevents pathogens from adapting to the antigen presentation pathway. Epidemics, 2010, 2, 99-108.	3.0	6
100	In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, 116, 625-627.	1.4	667
101	Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis. Rheumatology, 2009, 48, 899-905.	1.9	72
102	Reassessing the Human Immunodeficiency Virus Type 1 Life Cycle through Age-Structured Modeling: Life Span of Infected Cells, Viral Generation Time, and Basic Reproductive Number, <i>R</i> ₀ . Journal of Virology, 2009, 83, 7659-7667.	3.4	44
103	Towards estimating the true duration of dendritic cell interactions with T cells. Journal of Immunological Methods, 2009, 347, 54-69.	1.4	39
104	The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes. BMC Evolutionary Biology, 2009, 9, 184.	3.2	11
105	Analysing immune cell migration. Nature Reviews Immunology, 2009, 9, 789-798.	22.7	216
106	Tissue distribution of lymphocytes and plasma cells and the role of the gut: response to Pabst et al Trends in Immunology, 2008, 29, 209-210.	6.8	9
107	The Contribution of the Thymus to the Recovery of Peripheral Naive T-Cell Numbers During Antiretroviral Treatment for HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 1-8.	2.1	26
108	Sparse production but preferential incorporation of recently produced naÃ ⁻ ve T cells in the human peripheral pool. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6115-6120.	7.1	189

#	Article	IF	CITATIONS
109	Estimating In Vivo Death Rates of Targets due to CD8 T-Cell-Mediated Killing. Journal of Virology, 2008, 82, 11749-11757.	3.4	49
110	Comprehensive Assessment and Mathematical Modeling of T Cell Population Dynamics and Homeostasis. Journal of Immunology, 2008, 180, 2240-2250.	0.8	72
111	From the two-dimensional Th1 and Th2 phenotypes to high-dimensional models for gene regulation. International Immunology, 2008, 20, 1269-1277.	4.0	33
112	Dynamics of Immune Escape during HIV/SIV Infection. PLoS Computational Biology, 2008, 4, e1000103.	3.2	120
113	The Specificity and Polymorphism of the MHC Class I Prevents the Global Adaptation of HIV-1 to the Monomorphic Proteasome and TAP. PLoS ONE, 2008, 3, e3525.	2.5	15
114	Amino Acid Similarity Accounts for T Cell Cross-Reactivity and for "Holes―in the T Cell Repertoire. PLoS ONE, 2008, 3, e1831.	2.5	106
115	IL-2 Regulates Expansion of CD4+ T Cell Populations by Affecting Cell Death: Insights from Modeling CFSE Data. Journal of Immunology, 2007, 179, 950-957.	0.8	48
116	Dynamics of CD8+ T Cell Responses during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2007, 179, 2944-2951.	0.8	60
117	Lymph node topology dictates T cell migration behavior. Journal of Experimental Medicine, 2007, 204, 771-780.	8.5	203
118	Understanding the Failure of CD8 + T-Cell Vaccination against Simian/Human Immunodeficiency Virus. Journal of Virology, 2007, 81, 2838-2848.	3.4	63
119	Polyspecificity of T cell and B cell receptor recognition. Seminars in Immunology, 2007, 19, 216-224.	5.6	194
120	Do most lymphocytes in humans really reside in the gut?. Trends in Immunology, 2007, 28, 514-518.	6.8	187
121	Process Noise: An Explanation for the Fluctuations in the Immune Response during Acute Viral Infection. Biophysical Journal, 2007, 92, 3358-3367.	0.5	12
122	Time Scales of CD4+ T Cell Depletion in HIV Infection. PLoS Medicine, 2007, 4, e193.	8.4	11
123	HLA Alleles Associated with Slow Progression to AIDS Truly Prefer to Present HIV-1 p24. PLoS ONE, 2007, 2, e920.	2.5	84
124	Spatial modelling of brief and long interactions between T cells and dendritic cells. Immunology and Cell Biology, 2007, 85, 306-314.	2.3	51
125	Quantification of Tâ€cell dynamics: from telomeres to DNA labeling. Immunological Reviews, 2007, 216, 35-47.	6.0	71
126	Lymph node topology dictates T cell migration behavior. Journal of Cell Biology, 2007, 177, i2-i2.	5.2	1

#	Article	IF	CITATIONS
127	Estimating the role of thymic output in HIV infection. Current Opinion in HIV and AIDS, 2006, 1, 16-21.	3.8	10
128	Estimating Lymphocyte Division and Death Rates from CFSE Data. Bulletin of Mathematical Biology, 2006, 68, 1011-1031.	1.9	89
129	Estimating Costs and Benefits of CTL Escape Mutations in SIV/HIV Infection. PLoS Computational Biology, 2006, 2, e24.	3.2	59
130	The Integration Hypothesis: An Evolutionary Pathway to Benign SIV Infection. PLoS Pathogens, 2006, 2, e15.	4.7	9
131	Role of avidity and breadth of the CD4 T cell response in progression to AIDS. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1697-1704.	2.6	7
132	The Effects of Age, Thymectomy, and HIV Infection on $\hat{I}\pm$ and \hat{I}^2 TCR Excision Circles in Naive T Cells. Journal of Immunology, 2006, 177, 4391-4401.	0.8	25
133	Estimating division and death rates from CFSE data. Journal of Computational and Applied Mathematics, 2005, 184, 140-164.	2.0	47
134	Quantifying cell turnover using CFSE data. Journal of Immunological Methods, 2005, 298, 183-200.	1.4	70
135	A Mathematical Model of Protein Degradation by the Proteasome. Biophysical Journal, 2005, 88, 2422-2432.	0.5	37
136	Activation–threshold tuning in an affinity model for the T–cell repertoire. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 609-616.	2.6	42
137	Heterozygote advantage fails to explain the high degree of polymorphism of the MHC. Immunogenetics, 2004, 55, 725-731.	2.4	77
138	MHC polymorphism under host-pathogen coevolution. Immunogenetics, 2004, 55, 732-739.	2.4	235
139	Discriminating self from nonself with short peptides from large proteomes. Immunogenetics, 2004, 56, 311-320.	2.4	39
140	De novo T-cell generation in patients at different ages and stages of HIV-1 disease. Blood, 2004, 104, 470-477.	1.4	49
141	Establishment of the CD4+ T-cell pool in healthy children and untreated children infected with HIV-1. Blood, 2004, 104, 3513-3519.	1.4	59
142	Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome. Immunogenetics, 2003, 55, 437-449.	2.4	39
143	Thymic selection does not limit the individual MHC diversity. European Journal of Immunology, 2003, 33, 3353-3358.	2.9	52
144	A spatial model of germinal center reactions: cellular adhesion based sorting of B cells results in efficient affinity maturation. Journal of Theoretical Biology, 2003, 222, 9-22.	1.7	45

#	Article	IF	CITATIONS
145	Clonal Exhaustion as a Result of Immune Deviation. Bulletin of Mathematical Biology, 2003, 65, 359-374.	1.9	13
146	Thymic output: a bad TREC record. Nature Immunology, 2003, 4, 97-99.	14.5	154
147	Decline in excision circles requires homeostatic renewal or homeostatic death of naive T cells. Journal of Theoretical Biology, 2003, 224, 351-358.	1.7	46
148	Turnover Rates of B Cells, T Cells, and NK Cells in Simian Immunodeficiency Virus-Infected and Uninfected Rhesus Macaques. Journal of Immunology, 2003, 170, 2479-2487.	0.8	115
149	Estimating average cellular turnover from 5–bromo–2'–deoxyuridine (BrdU) measurements. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 849-858.	2.6	36
150	Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2003, 171, 3928-3935.	0.8	231
151	Procedures for reliable estimation of viral fitness from time-series data. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1887-1893.	2.6	47
152	Memorizing innate instructions requires a sufficiently specific adaptive immune system. International Immunology, 2002, 14, 525-532.	4.0	10
153	Reconstitution of naive T cells during antiretroviral treatment of HIV-infected adults is dependent on age. Aids, 2002, 16, 2263-2266.	2.2	37
154	Resource Competition Determines Selection of B Cell Repertoires. Journal of Theoretical Biology, 2001, 212, 333-343.	1.7	28
155	Recruitment Times, Proliferation, and Apoptosis Rates during the CD8 + T-Cell Response to Lymphocytic Choriomeningitis Virus. Journal of Virology, 2001, 75, 10663-10669.	3.4	175
156	Establishment of New Transmissible and Drug-Sensitive Human Immunodeficiency Virus Type 1 Wild Types due to Transmission of Nucleoside Analogue-Resistant Virus. Journal of Virology, 2001, 75, 595-602.	3.4	113
157	Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood. Journal of Virology, 2001, 75, 2597-2603.	3.4	24
158	Small variations in multiple parameters account for wide variations in HIV–1 set–points: a novel modelling approach. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 235-242.	2.6	52
159	Selection by AZT and Rapid Replacement in the Absence of Drugs of HIV Type 1 Resistant to Multiple Nucleoside Analogs. AIDS Research and Human Retroviruses, 2001, 17, 807-818.	1.1	16
160	The Dominant Source of CD4+ and CD8+ T-Cell Activation in HIV Infection Is Antigenic Stimulation. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, , 203-211.	2.1	20
161	The Dominant Source of CD4+ and CD8+ T-Cell Activation in HIV Infection Is Antigenic Stimulation. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 25, 203-211.	2.1	73
162	Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nature Medicine, 2000, 6, 1036-1042.	30.7	384

#	Article	IF	CITATIONS
163	T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood, 2000, 95, 249-255.	1.4	397
164	Diversity of Human T Cell Receptors. Science, 2000, 288, 1135a-1135.	12.6	71
165	Estimating Relative Fitness in Viral Competition Experiments. Journal of Virology, 2000, 74, 11067-11072.	3.4	85
166	Predicting the duration of antiviral treatment needed to suppress plasma HIV-1 RNA. Journal of Clinical Investigation, 2000, 105, 777-782.	8.2	41
167	T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood, 2000, 95, 249-255.	1.4	6
168	Normal Telomere Lengths in Naive and Memory CD4+ T Cells in HIV Type 1 Infection: A Mathematical Interpretation. AIDS Research and Human Retroviruses, 1999, 15, 1053-1062.	1.1	27
169	T Cell Dynamics in HIV-1 Infection. Advances in Immunology, 1999, 73, 301-327.	2.2	61
170	Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: A composite of redistribution and proliferation. Nature Medicine, 1998, 4, 208-214.	30.7	686
171	Limited CD4+ T-cell renewal in early HIV-1 infection: Effect of highly active antiretroviral therapy. Nature Medicine, 1998, 4, 794-801.	30.7	151
172	Crossreactivity of the T-cell receptor. Trends in Immunology, 1998, 19, 428-429.	7.5	18
173	Target cell availability and the successful suppression of HIV by hydroxyurea and didanosine. Aids, 1998, 12, 1567-1570.	2.2	41
174	Early recovery of CD4+ T lymphocytes in children on highly active antiretroviral therapy. Aids, 1998, 12, 2155-2159.	2.2	65
175	Overshoot of HIV-1 viraemia after early discontinuation of antiretroviral treatment. Aids, 1997, 11, F79-F84.	2.2	96
176	A Formal Derivation of the "Beddington―Functional Response. Journal of Theoretical Biology, 1997, 185, 389-400.	1.7	81
177	Extending the quasi-steady state approximation by changing variables. Bulletin of Mathematical Biology, 1996, 58, 43-63.	1.9	227
178	A new bell-shaped function for idiotypic interactions based on cross-linking. Bulletin of Mathematical Biology, 1996, 58, 285-312.	1.9	9
179	Self Assertion Modeled as a Network Repertoire of Multi-Determinant Antibodies. Journal of Theoretical Biology, 1996, 183, 55-66.	1.7	12
180	Extending the quasi-steady state approximation by changing variables. Bulletin of Mathematical Biology, 1996, 58, 43-63.	1.9	47

#	Article	IF	CITATIONS
181	A new bell-shaped function for idiotypic interactions based on cross-linking. Bulletin of Mathematical Biology, 1996, 58, 285-312.	1.9	4
182	Towards a general function describing t cell proliferation. Journal of Theoretical Biology, 1995, 175, 567-576.	1.7	145
183	Implications of Spatial Heterogeneity for the Paradox of Enrichment. Ecology, 1995, 76, 2270-2277.	3.2	135
184	T Cell Repertoires and Competitive Exclusion. Journal of Theoretical Biology, 1994, 169, 375-390.	1.7	116
185	Dynamics of HIV infection of CD4+ T cells. Mathematical Biosciences, 1993, 114, 81-125.	1.9	776
186	Pattern formation in one- and two-dimensional shape-space models of the immune system. Journal of Theoretical Biology, 1992, 155, 295-333.	1.7	96
187	Size and connectivity as emergent properties of a developing immune network. Journal of Theoretical Biology, 1991, 149, 381-424.	1.7	128
188	Localized memories in idiotypic networks. Journal of Theoretical Biology, 1990, 146, 483-499.	1.7	86
189	Poor repertoire selection in symmetric idiotypic network models. Immunology Letters, 1989, 22, 101-112.	2.5	4
190	Idiotypic networks incorporating T-B cell co-operation. The conditions for percolation. Journal of Theoretical Biology, 1989, 139, 17-38.	1.7	16
191	Immunological discrimination between self and non-self by precursor depletion and memory accumulation. Journal of Theoretical Biology, 1987, 124, 343-369.	1.7	34
192	Interactions between macrophages and T-lymphocytes: Tumor sneaking through intrinsic to helper T cell dynamics. Journal of Theoretical Biology, 1986, 120, 331-351.	1.7	50
193	The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca) Tj ETQq1 1	0.784314 1.4	rgBT /Overlo 180