List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415696/publications.pdf Version: 2024-02-01

ROB I DE ROED

#	Article	IF	CITATIONS
1	Dynamics of HIV infection of CD4+ T cells. Mathematical Biosciences, 1993, 114, 81-125.	1.9	776
2	Biphasic kinetics of peripheral blood T cells after triple combination therapy in HIV-1 infection: A composite of redistribution and proliferation. Nature Medicine, 1998, 4, 208-214.	30.7	686
3	In vivo labeling with 2H2O reveals a human neutrophil lifespan of 5.4 days. Blood, 2010, 116, 625-627.	1.4	667
4	Maintenance of Peripheral Naive T Cells Is Sustained by Thymus Output in Mice but Not Humans. Immunity, 2012, 36, 288-297.	14.3	482
5	T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood, 2000, 95, 249-255.	1.4	397
6	Increased cell division but not thymic dysfunction rapidly affects the T-cell receptor excision circle content of the naive T cell population in HIV-1 infection. Nature Medicine, 2000, 6, 1036-1042.	30.7	384
7	Diverse and heritable lineage imprinting of early haematopoietic progenitors. Nature, 2013, 496, 229-232.	27.8	337
8	Heterogeneous Differentiation Patterns of Individual CD8 ⁺ T Cells. Science, 2013, 340, 635-639.	12.6	320
9	MHC polymorphism under host-pathogen coevolution. Immunogenetics, 2004, 55, 732-739.	2.4	235
10	Different Dynamics of CD4+ and CD8+ T Cell Responses During and After Acute Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2003, 171, 3928-3935.	0.8	231
11	Tissue-resident memory CD8 ⁺ T cells continuously patrol skin epithelia to quickly recognize local antigen. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 19739-19744.	7.1	230
12	Extending the quasi-steady state approximation by changing variables. Bulletin of Mathematical Biology, 1996, 58, 43-63.	1.9	227
13	Analysing immune cell migration. Nature Reviews Immunology, 2009, 9, 789-798.	22.7	216
14	Quantifying T lymphocyte turnover. Journal of Theoretical Biology, 2013, 327, 45-87.	1.7	207
15	Lymph node topology dictates T cell migration behavior. Journal of Experimental Medicine, 2007, 204, 771-780.	8.5	203
16	Polyspecificity of T cell and B cell receptor recognition. Seminars in Immunology, 2007, 19, 216-224.	5.6	194
17	Sparse production but preferential incorporation of recently produced naÃ⁻ve T cells in the human peripheral pool. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 6115-6120.	7.1	189
18	Do most lymphocytes in humans really reside in the gut?. Trends in Immunology, 2007, 28, 514-518.	6.8	187

#	Article	IF	CITATIONS
19	The effect of group size on time budgets and social behaviour in wild long-tailed macaques (Macaca) Tj ETQq1	1 0.784314 1.4	l rgBT /Over
20	Recruitment Times, Proliferation, and Apoptosis Rates during the CD8 + T-Cell Response to Lymphocytic Choriomeningitis Virus. Journal of Virology, 2001, 75, 10663-10669.	3.4	175
21	Thymic output: a bad TREC record. Nature Immunology, 2003, 4, 97-99.	14.5	154
22	Limited CD4+ T-cell renewal in early HIV-1 infection: Effect of highly active antiretroviral therapy. Nature Medicine, 1998, 4, 794-801.	30.7	151
23	The Branching Point in Erythro-Myeloid Differentiation. Cell, 2015, 163, 1655-1662.	28.9	146
24	Towards a general function describing t cell proliferation. Journal of Theoretical Biology, 1995, 175, 567-576.	1.7	145
25	Implications of Spatial Heterogeneity for the Paradox of Enrichment. Ecology, 1995, 76, 2270-2277.	3.2	135
26	Size and connectivity as emergent properties of a developing immune network. Journal of Theoretical Biology, 1991, 149, 381-424.	1.7	128
27	Dynamics of Immune Escape during HIV/SIV Infection. PLoS Computational Biology, 2008, 4, e1000103.	3.2	120
28	T Cell Repertoires and Competitive Exclusion. Journal of Theoretical Biology, 1994, 169, 375-390.	1.7	116
29	Turnover Rates of B Cells, T Cells, and NK Cells in Simian Immunodeficiency Virus-Infected and Uninfected Rhesus Macaques. Journal of Immunology, 2003, 170, 2479-2487.	0.8	115
30	Establishment of New Transmissible and Drug-Sensitive Human Immunodeficiency Virus Type 1 Wild Types due to Transmission of Nucleoside Analogue-Resistant Virus. Journal of Virology, 2001, 75, 595-602.	3.4	113
31	Closing the gap between T-cell life span estimates from stable isotope-labeling studies in mice and humans. Blood, 2013, 122, 2205-2212.	1.4	106
32	Amino Acid Similarity Accounts for T Cell Cross-Reactivity and for "Holes―in the T Cell Repertoire. PLoS ONE, 2008, 3, e1831.	2.5	106
33	Polar auxin transport: models and mechanisms. Development (Cambridge), 2013, 140, 2253-2268.	2.5	105
34	Cytotoxic T cells are able to efficiently eliminate cancer cells by additive cytotoxicity. Nature Communications, 2021, 12, 5217.	12.8	99
35	Pattern formation in one- and two-dimensional shape-space models of the immune system. Journal of Theoretical Biology, 1992, 155, 295-333.	1.7	96
36	Overshoot of HIV-1 viraemia after early discontinuation of antiretroviral treatment. Aids, 1997, 11, F79-F84.	2.2	96

#	Article	IF	CITATIONS
37	The evolution of natural killer cell receptors. Immunogenetics, 2016, 68, 3-18.	2.4	91
38	Estimating Lymphocyte Division and Death Rates from CFSE Data. Bulletin of Mathematical Biology, 2006, 68, 1011-1031.	1.9	89
39	Localized memories in idiotypic networks. Journal of Theoretical Biology, 1990, 146, 483-499.	1.7	86
40	Estimating Relative Fitness in Viral Competition Experiments. Journal of Virology, 2000, 74, 11067-11072.	3.4	85
41	HLA Alleles Associated with Slow Progression to AIDS Truly Prefer to Present HIV-1 p24. PLoS ONE, 2007, 2, e920.	2.5	84
42	A Formal Derivation of the "Beddington―Functional Response. Journal of Theoretical Biology, 1997, 185, 389-400.	1.7	81
43	Heterozygote advantage fails to explain the high degree of polymorphism of the MHC. Immunogenetics, 2004, 55, 725-731.	2.4	77
44	Lymphocyte maintenance during healthy aging requires no substantial alterations in cellular turnover. Aging Cell, 2015, 14, 219-227.	6.7	76
45	An evolutionary perspective on the systems of adaptive immunity. Biological Reviews, 2018, 93, 505-528.	10.4	76
46	Current Estimates for HIV-1 Production Imply Rapid Viral Clearance in Lymphoid Tissues. PLoS Computational Biology, 2010, 6, e1000906.	3.2	75
47	The Dominant Source of CD4+ and CD8+ T-Cell Activation in HIV Infection Is Antigenic Stimulation. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, 25, 203-211.	2.1	73
48	Degenerate T-cell Recognition of Peptides on MHC Molecules Creates Large Holes in the T-cell Repertoire. PLoS Computational Biology, 2012, 8, e1002412.	3.2	73
49	Slowing Down of Recovery as Generic Risk Marker for Acute Severity Transitions in Chronic Diseases. Critical Care Medicine, 2016, 44, 601-606.	0.9	73
50	Comprehensive Assessment and Mathematical Modeling of T Cell Population Dynamics and Homeostasis. Journal of Immunology, 2008, 180, 2240-2250.	0.8	72
51	Differential cytokine profiles in juvenile idiopathic arthritis subtypes revealed by cluster analysis. Rheumatology, 2009, 48, 899-905.	1.9	72
52	Diversity of Human T Cell Receptors. Science, 2000, 288, 1135a-1135.	12.6	71
53	Quantification of Tâ€cell dynamics: from telomeres to DNA labeling. Immunological Reviews, 2007, 216, 35-47.	6.0	71
54	Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy. Molecular Systems Biology, 2010, 6, 348.	7.2	71

#	Article	IF	CITATIONS
55	Quantifying cell turnover using CFSE data. Journal of Immunological Methods, 2005, 298, 183-200.	1.4	70
56	Crawling and Gliding: A Computational Model for Shape-Driven Cell Migration. PLoS Computational Biology, 2015, 11, e1004280.	3.2	70
57	In Mice, Tuberculosis Progression Is Associated with Intensive Inflammatory Response and the Accumulation of Gr-1dim Cells in the Lungs. PLoS ONE, 2010, 5, e10469.	2.5	69
58	Subtle CXCR3-Dependent Chemotaxis of CTLs within Infected Tissue Allows Efficient Target Localization. Journal of Immunology, 2015, 195, 5285-5295.	0.8	66
59	Early recovery of CD4+ T lymphocytes in children on highly active antiretroviral therapy. Aids, 1998, 12, 2155-2159.	2.2	65
60	Understanding the Failure of CD8 + T-Cell Vaccination against Simian/Human Immunodeficiency Virus. Journal of Virology, 2007, 81, 2838-2848.	3.4	63
61	T Cell Dynamics in HIV-1 Infection. Advances in Immunology, 1999, 73, 301-327.	2.2	61
62	Circulatory and maturation kinetics of human monocyte subsets in vivo. Blood, 2017, 130, 1474-1477.	1.4	61
63	The naive T-cell receptor repertoire has an extremely broad distribution of clone sizes. ELife, 2020, 9, .	6.0	61
64	Dynamics of CD8+ T Cell Responses during Acute and Chronic Lymphocytic Choriomeningitis Virus Infection. Journal of Immunology, 2007, 179, 2944-2951.	0.8	60
65	Establishment of the CD4+ T-cell pool in healthy children and untreated children infected with HIV-1. Blood, 2004, 104, 3513-3519.	1.4	59
66	Estimating Costs and Benefits of CTL Escape Mutations in SIV/HIV Infection. PLoS Computational Biology, 2006, 2, e24.	3.2	59
67	Immune Activation and Collateral Damage in AIDS Pathogenesis. Frontiers in Immunology, 2013, 4, 298.	4.8	59
68	RTCR: a pipeline for complete and accurate recovery of T cell repertoires from high throughput sequencing data. Bioinformatics, 2016, 32, 3098-3106.	4.1	54
69	Small variations in multiple parameters account for wide variations in HIV–1 set–points: a novel modelling approach. Proceedings of the Royal Society B: Biological Sciences, 2001, 268, 235-242.	2.6	52
70	Thymic selection does not limit the individual MHC diversity. European Journal of Immunology, 2003, 33, 3353-3358.	2.9	52
71	Random Migration and Signal Integration Promote Rapid and Robust T Cell Recruitment. PLoS Computational Biology, 2014, 10, e1003752.	3.2	52
72	Spatial modelling of brief and long interactions between T cells and dendritic cells. Immunology and Cell Biology, 2007, 85, 306-314.	2.3	51

#	Article	IF	CITATIONS
73	Interactions between macrophages and T-lymphocytes: Tumor sneaking through intrinsic to helper T cell dynamics. Journal of Theoretical Biology, 1986, 120, 331-351.	1.7	50
74	A General Functional Response of Cytotoxic T Lymphocyte-Mediated Killing of Target Cells. Biophysical Journal, 2014, 106, 1780-1791.	0.5	50
75	De novo T-cell generation in patients at different ages and stages of HIV-1 disease. Blood, 2004, 104, 470-477.	1.4	49
76	Estimating In Vivo Death Rates of Targets due to CD8 T-Cell-Mediated Killing. Journal of Virology, 2008, 82, 11749-11757.	3.4	49
77	Reliable reconstruction of HIV-1 whole genome haplotypes reveals clonal interference and genetic hitchhiking among immune escape variants. Retrovirology, 2014, 11, 56.	2.0	49
78	IL-2 Regulates Expansion of CD4+ T Cell Populations by Affecting Cell Death: Insights from Modeling CFSE Data. Journal of Immunology, 2007, 179, 950-957.	0.8	48
79	Extending the quasi-steady state approximation by changing variables. Bulletin of Mathematical Biology, 1996, 58, 43-63.	1.9	47
80	Procedures for reliable estimation of viral fitness from time-series data. Proceedings of the Royal Society B: Biological Sciences, 2002, 269, 1887-1893.	2.6	47
81	Estimating division and death rates from CFSE data. Journal of Computational and Applied Mathematics, 2005, 184, 140-164.	2.0	47
82	Decline in excision circles requires homeostatic renewal or homeostatic death of naive T cells. Journal of Theoretical Biology, 2003, 224, 351-358.	1.7	46
83	A spatial model of germinal center reactions: cellular adhesion based sorting of B cells results in efficient affinity maturation. Journal of Theoretical Biology, 2003, 222, 9-22.	1.7	45
84	Reassessing the Human Immunodeficiency Virus Type 1 Life Cycle through Age-Structured Modeling: Life Span of Infected Cells, Viral Generation Time, and Basic Reproductive Number, <i>R</i> ₀ . Journal of Virology, 2009, 83, 7659-7667.	3.4	44
85	Implications of CTL-Mediated Killing of HIV-Infected Cells during the Non-Productive Stage of Infection. PLoS ONE, 2011, 6, e16468.	2.5	43
86	B cells within germinal centers migrate preferentially from dark to light zone. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 8755-8760.	7.1	43
87	Activation–threshold tuning in an affinity model for the T–cell repertoire. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 609-616.	2.6	42
88	Target cell availability and the successful suppression of HIV by hydroxyurea and didanosine. Aids, 1998, 12, 1567-1570.	2.2	41
89	Predicting the duration of antiviral treatment needed to suppress plasma HIV-1 RNA. Journal of Clinical Investigation, 2000, 105, 777-782.	8.2	41
90	Killing of Targets by CD8+ T Cells in the Mouse Spleen Follows the Law of Mass Action. PLoS ONE, 2011, 6, e15959.	2.5	41

#	Article	IF	CITATIONS
91	Determining Lineage Pathways from Cellular Barcoding Experiments. Cell Reports, 2014, 6, 617-624.	6.4	40
92	Current best estimates for the average lifespans of mouse and human leukocytes: reviewing two decades of deuteriumâ€labeling experiments. Immunological Reviews, 2018, 285, 233-248.	6.0	40
93	Bioinformatic analysis of functional differences between the immunoproteasome and the constitutive proteasome. Immunogenetics, 2003, 55, 437-449.	2.4	39
94	Discriminating self from nonself with short peptides from large proteomes. Immunogenetics, 2004, 56, 311-320.	2.4	39
95	Towards estimating the true duration of dendritic cell interactions with T cells. Journal of Immunological Methods, 2009, 347, 54-69.	1.4	39
96	Reconstitution of naive T cells during antiretroviral treatment of HIV-infected adults is dependent on age. Aids, 2002, 16, 2263-2266.	2.2	37
97	A Mathematical Model of Protein Degradation by the Proteasome. Biophysical Journal, 2005, 88, 2422-2432.	0.5	37
98	Chemotactic Migration of T Cells towards Dendritic Cells Promotes the Detection of Rare Antigens. PLoS Computational Biology, 2012, 8, e1002763.	3.2	37
99	Estimating average cellular turnover from 5–bromo–2'–deoxyuridine (BrdU) measurements. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 849-858.	2.6	36
100	The Rate of Immune Escape Vanishes When Multiple Immune Responses Control an HIV Infection. Journal of Immunology, 2013, 191, 3277-3286.	0.8	36
101	Immunological discrimination between self and non-self by precursor depletion and memory accumulation. Journal of Theoretical Biology, 1987, 124, 343-369.	1.7	34
102	From the two-dimensional Th1 and Th2 phenotypes to high-dimensional models for gene regulation. International Immunology, 2008, 20, 1269-1277.	4.0	33
103	Explicit Kinetic Heterogeneity: Mathematical Models for Interpretation of Deuterium Labeling of Heterogeneous Cell Populations. PLoS Computational Biology, 2010, 6, e1000666.	3.2	33
104	Identifying viral parameters from in vitro cell cultures. Frontiers in Microbiology, 2012, 3, 319.	3.5	33
105	Response: The in vivo half-life of human neutrophils. Blood, 2011, 117, 6053-6054.	1.4	32
106	How Germinal Centers Evolve Broadly Neutralizing Antibodies: the Breadth of the Follicular Helper T Cell Response. Journal of Virology, 2017, 91, .	3.4	32
107	Short Lifespans of Memory T-cells in Bone Marrow, Blood, and Lymph Nodes Suggest That T-cell Memory Is Maintained by Continuous Self-Renewal of Recirculating Cells. Frontiers in Immunology, 2018, 9, 2054.	4.8	32

108 Cytokines and Chemokines Involved in Acute Retinal Necrosis. , 2017, 58, 2139.

 $\mathbf{31}$

#	Article	IF	CITATIONS
109	Testing structural identifiability by a simple scaling method. PLoS Computational Biology, 2020, 16, e1008248.	3.2	31
110	Which of Our Modeling Predictions Are Robust?. PLoS Computational Biology, 2012, 8, e1002593.	3.2	30
111	Replicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. Nature Immunology, 2022, 23, 791-801.	14.5	30
112	Resource Competition Determines Selection of B Cell Repertoires. Journal of Theoretical Biology, 2001, 212, 333-343.	1.7	28
113	Lineage-specific T-cell reconstitution following in vivo CD4+ and CD8+ lymphocyte depletion in nonhuman primates. Blood, 2010, 116, 748-758.	1.4	28
114	Quantification of naive and memory T-cell turnover during HIV-1 infection. Aids, 2015, 29, 2071-2080.	2.2	28
115	The Reticular Cell Network: A Robust Backbone for Immune Responses. PLoS Biology, 2016, 14, e2000827.	5.6	28
116	Local actin dynamics couple speed and persistence in a cellular Potts model of cell migration. Biophysical Journal, 2021, 120, 2609-2622.	0.5	28
117	Normal Telomere Lengths in Naive and Memory CD4+ T Cells in HIV Type 1 Infection: A Mathematical Interpretation. AIDS Research and Human Retroviruses, 1999, 15, 1053-1062.	1.1	27
118	Long-term adaptation of the influenza A virus by escaping cytotoxic T-cell recognition. Scientific Reports, 2016, 6, 33334.	3.3	27
119	The Contribution of the Thymus to the Recovery of Peripheral Naive T-Cell Numbers During Antiretroviral Treatment for HIV Infection. Journal of Acquired Immune Deficiency Syndromes (1999), 2008, 49, 1-8.	2.1	26
120	Immuno-epidemiological Modeling of HIV-1 Predicts High Heritability of the Set-Point Virus Load, while Selection for CTL Escape Dominates Virulence Evolution. PLoS Computational Biology, 2014, 10, e1003899.	3.2	26
121	CXCL4 Links Inflammation and Fibrosis by Reprogramming Monocyte-Derived Dendritic Cells in vitro. Frontiers in Immunology, 2020, 11, 2149.	4.8	26
122	The Effects of Age, Thymectomy, and HIV Infection on $\hat{I}\pm$ and \hat{I}^2 TCR Excision Circles in Naive T Cells. Journal of Immunology, 2006, 177, 4391-4401.	0.8	25
123	Hematopoiesis in numbers. Trends in Immunology, 2021, 42, 1100-1112.	6.8	25
124	Release of Virus from Lymphoid Tissue Affects Human Immunodeficiency Virus Type 1 and Hepatitis C Virus Kinetics in the Blood. Journal of Virology, 2001, 75, 2597-2603.	3.4	24
125	Modelling deuterium labelling of lymphocytes with temporal and/or kinetic heterogeneity. Journal of the Royal Society Interface, 2012, 9, 2191-2200.	3.4	22
126	The Dominant Source of CD4+ and CD8+ T-Cell Activation in HIV Infection Is Antigenic Stimulation. Journal of Acquired Immune Deficiency Syndromes (1999), 2000, , 203-211.	2.1	20

#	Article	IF	CITATIONS
127	Virus Encoded MHC-Like Decoys Diversify the Inhibitory KIR Repertoire. PLoS Computational Biology, 2013, 9, e1003264.	3.2	20
128	Quantifying the effect of Vpu on the promotion of HIV-1 replication in the humanized mouse model. Retrovirology, 2016, 13, 23.	2.0	20
129	What do mathematical models tell us about killing rates during HIV-1 infection?. Immunology Letters, 2015, 168, 1-6.	2.5	19
130	Crossreactivity of the T-cell receptor. Trends in Immunology, 1998, 19, 428-429.	7.5	18
131	Notwithstanding Circumstantial Alibis, Cytotoxic T Cells Can Be Major Killers of HIV-1-Infected Cells. Journal of Virology, 2016, 90, 7066-7083.	3.4	18
132	A mechanistic model for bromodeoxyuridine dilution naturally explains labelling data of self-renewing T cell populations. Journal of the Royal Society Interface, 2013, 10, 20120617.	3.4	17
133	Reconciling Estimates of Cell Proliferation from Stable Isotope Labeling Experiments. PLoS Computational Biology, 2015, 11, e1004355.	3.2	17
134	Idiotypic networks incorporating T-B cell co-operation. The conditions for percolation. Journal of Theoretical Biology, 1989, 139, 17-38.	1.7	16
135	Selection by AZT and Rapid Replacement in the Absence of Drugs of HIV Type 1 Resistant to Multiple Nucleoside Analogs. AIDS Research and Human Retroviruses, 2001, 17, 807-818.	1.1	16
136	A Coevolutionary Arms Race between Hosts and Viruses Drives Polymorphism and Polygenicity of NK Cell Receptors. Molecular Biology and Evolution, 2015, 32, 2149-2160.	8.9	16
137	The Specificity and Polymorphism of the MHC Class I Prevents the Global Adaptation of HIV-1 to the Monomorphic Proteasome and TAP. PLoS ONE, 2008, 3, e3525.	2.5	15
138	Toxin production spontaneously becomes regulated by local cell density in evolving bacterial populations. PLoS Computational Biology, 2019, 15, e1007333.	3.2	15
139	A Sigmoid Functional Response Emerges When Cytotoxic T Lymphocytes Start Killing Fresh TargetÂCells. Biophysical Journal, 2017, 112, 1221-1235.	0.5	14
140	Tissue Dimensionality Influences the Functional Response of Cytotoxic T Lymphocyte-Mediated Killing of Targets. Frontiers in Immunology, 2016, 7, 668.	4.8	14
141	Dynamics of Recent Thymic Emigrants in Young Adult Mice. Frontiers in Immunology, 2017, 8, 933.	4.8	14
142	Characterization of the ferret TRB locus guided by V, D, J, and C gene expression analysis. Immunogenetics, 2020, 72, 101-108.	2.4	14
143	Clonal Exhaustion as a Result of Immune Deviation. Bulletin of Mathematical Biology, 2003, 65, 359-374.	1.9	13
144	Improving the estimation of the death rate of infected cells from time course data during the acute phase of virus infections: application to acute HIV-1 infection in a humanized mouse model. Theoretical Biology and Medical Modelling, 2014, 11, 22.	2.1	13

#	Article	IF	CITATIONS
145	HIV-1 CCR5 gene therapy will fail unless it is combined with a suicide gene. Scientific Reports, 2016, 5, 18088.	3.3	13
146	Self Assertion Modeled as a Network Repertoire of Multi-Determinant Antibodies. Journal of Theoretical Biology, 1996, 183, 55-66.	1.7	12
147	Process Noise: An Explanation for the Fluctuations in the Immune Response during Acute Viral Infection. Biophysical Journal, 2007, 92, 3358-3367.	0.5	12
148	Cell division curtails helper phenotype plasticity and expedites helper T ell differentiation. Immunology and Cell Biology, 2012, 90, 860-868.	2.3	12
149	Antigen-Stimulated CD4 T Cell Expansion Can Be Limited by Their Grazing of Peptide–MHC Complexes. Journal of Immunology, 2013, 190, 5454-5458.	0.8	12
150	Time Scales of CD4+ T Cell Depletion in HIV Infection. PLoS Medicine, 2007, 4, e193.	8.4	11
151	The distribution of CTL epitopes in HIV-1 appears to be random, and similar to that of other proteomes. BMC Evolutionary Biology, 2009, 9, 184.	3.2	11
152	Impaired immune evasion in HIV through intracellular delays and multiple infection of cells. Proceedings of the Royal Society B: Biological Sciences, 2012, 279, 3003-3010.	2.6	11
153	Quantifying the Protection of Activating and Inhibiting NK Cell Receptors during Infection with a CMV-Like Virus. Frontiers in Immunology, 2014, 5, 20.	4.8	11
154	Can Selective MHC Downregulation Explain the Specificity and Genetic Diversity of NK Cell Receptors?. Frontiers in Immunology, 2015, 6, 311.	4.8	11
155	Is T Cell Negative Selection a Learning Algorithm?. Cells, 2020, 9, 690.	4.1	11
156	Memorizing innate instructions requires a sufficiently specific adaptive immune system. International Immunology, 2002, 14, 525-532.	4.0	10
157	Estimating the role of thymic output in HIV infection. Current Opinion in HIV and AIDS, 2006, 1, 16-21.	3.8	10
158	Stochastic Inheritance of Division and Death Times Determines the Size and Phenotype of CD8+ T Cell Families. Frontiers in Immunology, 2019, 10, 436.	4.8	10
159	Reconciling Longitudinal Naive T-Cell and TREC Dynamics during HIV-1 Infection. PLoS ONE, 2016, 11, e0152513.	2.5	10
160	Quantification of T-cell dynamics during latent cytomegalovirus infection in humans. PLoS Pathogens, 2021, 17, e1010152.	4.7	10
161	A new bell-shaped function for idiotypic interactions based on cross-linking. Bulletin of Mathematical Biology, 1996, 58, 285-312.	1.9	9
162	The Integration Hypothesis: An Evolutionary Pathway to Benign SIV Infection. PLoS Pathogens, 2006, 2, e15.	4.7	9

#	Article	IF	CITATIONS
163	Tissue distribution of lymphocytes and plasma cells and the role of the gut: response to Pabst et al Trends in Immunology, 2008, 29, 209-210.	6.8	9
164	Cell-density independent increased lymphocyte production and loss rates post-autologous HSCT. ELife, 2021, 10, .	6.0	9
165	Early divergence of Th1 and Th2 transcriptomes involves a small core response and sets of transiently expressed genes. European Journal of Immunology, 2013, 43, 1074-1084.	2.9	8
166	Role of avidity and breadth of the CD4 T cell response in progression to AIDS. Proceedings of the Royal Society B: Biological Sciences, 2006, 273, 1697-1704.	2.6	7
167	Identification of helper T cell master regulator candidates using the polar score method. Journal of Immunological Methods, 2010, 361, 98-109.	1.4	7
168	Analytical results on the Beauchemin model of lymphocyte migration. BMC Bioinformatics, 2013, 14, S10.	2.6	7
169	A new model to simulate and analyze proliferating cell populations in BrdU labeling experiments. BMC Systems Biology, 2013, 7, S4.	3.0	7
170	Induction of appropriate Th cell phenotypes: Cellular decision-making in heterogeneous environments. Parasite Immunology, 2013, 35, n/a-n/a.	1.5	7
171	Time to Viral Suppression in Perinatally HIV-Infected Infants Depends on the Viral Load and CD4 T-Cell Percentage at the Start of Treatment. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 83, 522-529.	2.1	7
172	Quantifying how MHC polymorphism prevents pathogens from adapting to the antigen presentation pathway. Epidemics, 2010, 2, 99-108.	3.0	6
173	How lymphocytes add up. Nature Immunology, 2017, 18, 12-13.	14.5	6
174	TCRβ rearrangements without a D segment are common, abundant, and public. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	6
175	T-cell division in human immunodeficiency virus (HIV)-1 infection is mainly due to immune activation: a longitudinal analysis in patients before and during highly active antiretroviral therapy (HAART). Blood, 2000, 95, 249-255.	1.4	6
176	Complementarity of Binding Motifs is a General Property of HLA-A and HLA-B Molecules and Does Not Seem to Effect HLA Haplotype Composition. Frontiers in Immunology, 2013, 4, 374.	4.8	5
177	Specificity of inhibitory KIRs enables NK cells to detect changes in an altered peptide environment. Immunogenetics, 2018, 70, 87-97.	2.4	5
178	Quantifying the Dynamics of HIV Decline in Perinatally Infected Neonates on Antiretroviral Therapy. Journal of Acquired Immune Deficiency Syndromes (1999), 2020, 85, 209-218.	2.1	5
179	Poor repertoire selection in symmetric idiotypic network models. Immunology Letters, 1989, 22, 101-112.	2.5	4
180	A new bell-shaped function for idiotypic interactions based on cross-linking. Bulletin of Mathematical Biology, 1996, 58, 285-312.	1.9	4

#	Article	IF	CITATIONS
181	Local Attachment Explains Small World–like Properties of Fibroblastic Reticular Cell Networks in Lymph Nodes. Journal of Immunology, 2019, 202, 3318-3325.	0.8	4
182	Quantification of CD4 Recovery in Early-Treated Infants Living With HIV. Journal of Acquired Immune Deficiency Syndromes (1999), 2022, 89, 546-557.	2.1	4
183	Turnover of Murine Cytomegalovirus–Expanded CD8+ T Cells Is Similar to That of Memory Phenotype T Cells and Independent of the Magnitude of the Response. Journal of Immunology, 2022, 208, 799-806.	0.8	4
184	A Generalized Mathematical Model To Estimate T- and B-Cell Receptor Diversities Using AmpliCot. Biophysical Journal, 2012, 103, 999-1010.	0.5	1
185	Optimal T cell cross-reactivity and the role of regulatory T cells. Journal of Theoretical Biology, 2015, 375, 4-12.	1.7	1
186	Lymph node topology dictates T cell migration behavior. Journal of Cell Biology, 2007, 177, i2-i2.	5.2	1
187	Combining cellular barcoding and mathematical modeling to infer the structure of the hematopoietic pathway. Experimental Hematology, 2014, 42, S56.	0.4	0
188	Common myeloid progenitors are made up of distinct subpopulations that either yield erythrocytes or myeloid cells. Experimental Hematology, 2015, 43, S88.	0.4	0
189	The limitations, dangers, and benefits of simple methods for testing identifiability. PLoS Computational Biology, 2021, 17, e1009425.	3.2	0
190	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0
191	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0
192	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0
193	Testing structural identifiability by a simple scaling method. , 2020, 16, e1008248.		0