Arne Thomas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415602/publications.pdf

Version: 2024-02-01

260 papers 52,858 citations

102 h-index 226 g-index

285 all docs

285 docs citations

times ranked

285

35518 citing authors

#	Article	IF	CITATIONS
1	A metal-free polymeric photocatalyst for hydrogen production from water under visibleÂlight. Nature Materials, 2009, 8, 76-80.	27.5	10,442
2	Graphitic carbon nitride materials: variation of structure and morphology and their use as metal-free catalysts. Journal of Materials Chemistry, 2008, 18, 4893.	6.7	2,891
3	Porous, Covalent Triazineâ€Based Frameworks Prepared by Ionothermal Synthesis. Angewandte Chemie - International Edition, 2008, 47, 3450-3453.	13.8	2,138
4	Doping carbons beyond nitrogen: an overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy and Environmental Science, 2013, 6, 2839.	30.8	1,585
5	Metalâ€Containing Carbon Nitride Compounds: A New Functional Organic–Metal Hybrid Material. Advanced Materials, 2009, 21, 1609-1612.	21.0	1,160
6	Ionothermal Synthesis of Crystalline, Condensed, Graphitic Carbon Nitride. Chemistry - A European Journal, 2008, 14, 8177-8182.	3.3	1,040
7	Chemical Synthesis of Mesoporous Carbon Nitrides Using Hard Templates and Their Use as a Metal-Free Catalyst for Friedel–Crafts Reaction of Benzene. Angewandte Chemie - International Edition, 2006, 45, 4467-4471.	13.8	904
8	From Melamineâ€Cyanuric Acid Supramolecular Aggregates to Carbon Nitride Hollow Spheres. Advanced Functional Materials, 2013, 23, 3661-3667.	14.9	737
9	Functional Materials: From Hard to Soft Porous Frameworks. Angewandte Chemie - International Edition, 2010, 49, 8328-8344.	13.8	724
10	Activation of Carbon Nitride Solids by Protonation: Morphology Changes, Enhanced Ionic Conductivity, and Photoconduction Experiments. Journal of the American Chemical Society, 2009, 131, 50-51.	13.7	721
11	Diacetylene Functionalized Covalent Organic Framework (COF) for Photocatalytic Hydrogen Generation. Journal of the American Chemical Society, 2018, 140, 1423-1427.	13.7	646
12	A Generalized Synthesis of Metal Oxide Hollow Spheres Using a Hydrothermal Approach. Chemistry of Materials, 2006, 18, 3808-3812.	6.7	627
13	Catalyst-free Preparation of Melamine-Based Microporous Polymer Networks through Schiff Base Chemistry. Journal of the American Chemical Society, 2009, 131, 7216-7217.	13.7	579
14	Ionic Liquids as Precursors for Nitrogenâ€Doped Graphitic Carbon. Advanced Materials, 2010, 22, 87-92.	21.0	574
15	Metalâ€Free Heterogeneous Catalysis for Sustainable Chemistry. ChemSusChem, 2010, 3, 169-180.	6.8	536
16	Solid Catalysts for the Selective Lowâ€Temperature Oxidation of Methane to Methanol. Angewandte Chemie - International Edition, 2009, 48, 6909-6912.	13.8	528
17	Triazineâ€Based Graphitic Carbon Nitride: a Twoâ€Dimensional Semiconductor. Angewandte Chemie - International Edition, 2014, 53, 7450-7455.	13.8	523
18	From Microporous Regular Frameworks to Mesoporous Materials with Ultrahigh Surface Area: Dynamic Reorganization of Porous Polymer Networks. Journal of the American Chemical Society, 2008, 130, 13333-13337.	13.7	512

#	Article	IF	Citations
19	Rational Extension of the Family of Layered, Covalent, Triazineâ€Based Frameworks with Regular Porosity. Advanced Materials, 2010, 22, 2202-2205.	21.0	465
20	Quantifying the density and utilization of active sites in non-precious metal oxygen electroreduction catalysts. Nature Communications, 2015, 6, 8618.	12.8	461
21	Covalent organic frameworks (COFs) for electrochemical applications. Chemical Society Reviews, 2021, 50, 6871-6913.	38.1	461
22	A Direct Synthesis of Mesoporous Carbons with Bicontinuous Pore Morphology from Crude Plant Material by Hydrothermal Carbonization. Chemistry of Materials, 2007, 19, 4205-4212.	6.7	441
23	Functional Graphene Nanomaterials Based Architectures: Biointeractions, Fabrications, and Emerging Biological Applications. Chemical Reviews, 2017, 117, 1826-1914.	47.7	425
24	Toward Stable Interfaces in Conjugated Polymers: Microporous Poly(<i>p</i> phenylene) and Poly(phenyleneethynylene) Based on a Spirobifluorene Building Block. Journal of the American Chemical Society, 2008, 130, 6334-6335.	13.7	420
25	Back in the black: hydrothermal carbonization of plant material as an efficient chemical process to treat the CO2 problem?. New Journal of Chemistry, 2007, 31, 787.	2.8	410
26	Condensed Graphitic Carbon Nitride Nanorods by Nanoconfinement: Promotion of Crystallinity on Photocatalytic Conversion. Chemistry of Materials, 2011, 23, 4344-4348.	6.7	393
27	Structural Evolution of 2D Microporous Covalent Triazine-Based Framework toward the Study of High-Performance Supercapacitors. Journal of the American Chemical Society, 2015, 137, 219-225.	13.7	390
28	Trends and challenges for microporous polymers. Chemical Society Reviews, 2017, 46, 3302-3321.	38.1	386
29	Covalent Triazine Framework as Catalytic Support for Liquid Phase Reaction. Nano Letters, 2010, 10, 537-541.	9.1	363
30	Covalent Triazine Frameworks Prepared from 1,3,5-Tricyanobenzene. Chemistry of Materials, 2013, 25, 1542-1548.	6.7	363
31	Hard Templates for Soft Materials: Creating Nanostructured Organic Materials. Chemistry of Materials, 2008, 20, 738-755.	6.7	362
32	Metal-Free Activation of CO2 by Mesoporous Graphitic Carbon Nitride. Angewandte Chemie - International Edition, 2007, 46, 2717-2720.	13.8	343
33	Active Salt/Silicaâ€Templated 2D Mesoporous FeCoâ€N _{<i>x</i>} â€Carbon as Bifunctional Oxygen Electrodes for Zinc–Air Batteries. Angewandte Chemie - International Edition, 2018, 57, 1856-1862.	13.8	340
34	Macro/Microporous Covalent Organic Frameworks for Efficient Electrocatalysis. Journal of the American Chemical Society, 2019, 141, 6623-6630.	13.7	340
35	Conjugated Microporous Polymer Networks via Yamamoto Polymerization. Macromolecules, 2009, 42, 4426-4429.	4.8	339
36	Mesoporous, 2D Hexagonal Carbon Nitride and Titanium Nitride/Carbon Composites. Advanced Materials, 2009, 21, 4270-4274.	21.0	309

3

#	Article	lF	CITATIONS
37	Toward Tailorable Porous Organic Polymer Networks: A High-Temperature Dynamic Polymerization Scheme Based on Aromatic Nitriles. Macromolecules, 2009, 42, 319-326.	4.8	307
38	Microporous Networks of High-Performance Polymers: Elastic Deformations and Gas Sorption Properties. Macromolecules, 2008, 41, 2880-2885.	4.8	297
39	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie - International Edition, 2018, 57, 8921-8926.	13.8	291
40	Making Metali£¿Carbon Nitride Heterojunctions for Improved Photocatalytic Hydrogen Evolution with Visible Light. ChemCatChem, 2010, 2, 834-838.	3.7	287
41	Microporous Conjugated Poly(thienylene arylene) Networks. Advanced Materials, 2009, 21, 702-705.	21.0	281
42	Threeâ€Dimensional Macroscopic Assemblies of Lowâ€Dimensional Carbon Nitrides for Enhanced Hydrogen Evolution. Angewandte Chemie - International Edition, 2013, 52, 11083-11087.	13.8	278
43	Cubic Mesoporous Graphitic Carbon(IV) Nitride: An Allâ€inâ€One Chemosensor for Selective Optical Sensing of Metal Ions. Angewandte Chemie - International Edition, 2010, 49, 9706-9710.	13.8	266
44	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie - International Edition, 2017, 56, 1653-1657.	13.8	261
45	Carbonâ€Based Microbialâ€Fuelâ€Cell Electrodes: From Conductive Supports to Active Catalysts. Advanced Materials, 2017, 29, 1602547.	21.0	252
46	A detailed view on the polycondensation of ionic liquid monomers towards nitrogen doped carbon materials. Journal of Materials Chemistry, 2010, 20, 6746.	6.7	247
47	Replication and Coating of Silica Templates by Hydrothermal Carbonization. Advanced Functional Materials, 2007, 17, 1010-1018.	14.9	244
48	Exploring Polymers of Intrinsic Microporosity – Microporous, Soluble Polyamide and Polyimide. Macromolecular Rapid Communications, 2007, 28, 1871-1876.	3.9	240
49	Mesoporous carbon nitride–silica composites by a combined sol–gel/thermal condensation approach and their application as photocatalysts. Energy and Environmental Science, 2011, 4, 4668.	30.8	239
50	Efficient Supercapacitor Energy Storage Using Conjugated Microporous Polymer Networks Synthesized from Buchwald–Hartwig Coupling. Advanced Materials, 2018, 30, e1705710.	21.0	239
51	Strongly Reducing (Diarylamino)benzene-Based Covalent Organic Framework for Metal-Free Visible Light Photocatalytic H ₂ O ₂ Generation. Journal of the American Chemical Society, 2020, 142, 20107-20116.	13.7	239
52	Covalent Triazine Frameworks as Heterogeneous Catalysts for the Synthesis of Cyclic and Linear Carbonates from Carbon Dioxide and Epoxides. ChemSusChem, 2012, 5, 1793-1799.	6.8	237
53	Oxygen-evolving catalytic atoms on metal carbides. Nature Materials, 2021, 20, 1240-1247.	27.5	235
54	Metal-free catalysis of sustainable Friedel–Crafts reactions: direct activation of benzene by carbon nitrides to avoid the use of metal chlorides and halogenated compounds. Chemical Communications, 2006, , 4530-4532.	4.1	228

#	Article	IF	Citations
55	Noble-Metal-Free Electrocatalysts with Enhanced ORR Performance by Task-Specific Functionalization of Carbon using Ionic Liquid Precursor Systems. Journal of the American Chemical Society, 2014, 136, 14486-14497.	13.7	219
56	Fast tuning of covalent triazine frameworks for photocatalytic hydrogen evolution. Chemical Communications, 2017, 53, 5854-5857.	4.1	206
57	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie - International Edition, 2019, 58, 14865-14870.	13.8	205
58	Perovskite-type mixed oxides as catalytic material for NO removal. Applied Catalysis B: Environmental, 2009, 92, 225-233.	20.2	193
59	Graphitic carbon nitride as a metal-free catalyst for NO decomposition. Chemical Communications, 2010, 46, 6965.	4.1	186
60	Supported Cobalt Oxide Nanoparticles As Catalyst for Aerobic Oxidation of Alcohols in Liquid Phase. ACS Catalysis, 2011, 1, 342-347.	11.2	184
61	Porous Polymers: Enabling Solutions for Energy Applications. Macromolecular Rapid Communications, 2009, 30, 221-236.	3.9	183
62	Ultralight covalent organic framework/graphene aerogels with hierarchical porosity. Nature Communications, 2020, 11, 4712.	12.8	183
63	Replication of Lyotropic Block Copolymer Mesophases into Porous Silica by Nanocasting:Â Learning about Finer Details of Polymer Self-Assembly. Langmuir, 2003, 19, 4455-4459.	3.5	181
64	25th Anniversary Article: "Cooking Carbon with Salt― Carbon Materials and Carbonaceous Frameworks from Ionic Liquids and Poly(ionic liquid)s. Advanced Materials, 2013, 25, 5838-5855.	21.0	177
65	3D Anionic Silicate Covalent Organic Framework with srs Topology. Journal of the American Chemical Society, 2018, 140, 5330-5333.	13.7	174
66	Proton Conductivity Enhancement by Nanostructural Control of Poly(benzimidazole)â€Phosphoric Acid Adducts. Advanced Materials, 2008, 20, 2595-2598.	21.0	172
67	Synthesis of Microporous Carbon Nanofibers and Nanotubes from Conjugated Polymer Network and Evaluation in Electrochemical Capacitor. Advanced Functional Materials, 2009, 19, 2125-2129.	14.9	172
68	Terephthalonitrile-derived nitrogen-rich networks for high performance supercapacitors. Energy and Environmental Science, 2012, 5, 9747.	30.8	171
69	Protonated Imineâ€Linked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie - International Edition, 2021, 60, 19797-19803.	13.8	171
70	Micropore Analysis of Polymer Networks by Gas Sorption and ¹²⁹ Xe NMR Spectroscopy: Toward a Better Understanding of Intrinsic Microporosity. Langmuir, 2010, 26, 15650-15656.	3.5	165
71	Aminated hydrophilic ordered mesoporous carbons. Journal of Materials Chemistry, 2007, 17, 3412.	6.7	164
72	Organic materials for hydrogen storage applications: from physisorption on organic solids to chemisorption in organic molecules. Energy and Environmental Science, 2009, 2, 480.	30.8	160

#	Article	lF	Citations
73	Growth Confined by the Nitrogen Source: Synthesis of Pure Metal Nitride Nanoparticles in Mesoporous Graphitic Carbon Nitride. Advanced Materials, 2007, 19, 264-267.	21.0	159
74	Complementing Graphenes: 1D Interplanar Charge Transport in Polymeric Graphitic Carbon Nitrides. Advanced Materials, 2015, 27, 7993-7999.	21.0	153
75	Microporous sulfur-doped carbon from thienyl-based polymer network precursors. Chemical Communications, 2011, 47, 8283.	4.1	152
76	Synthesis of Ternary Metal Nitride Nanoparticles Using Mesoporous Carbon Nitride as Reactive Template. ACS Nano, 2008, 2, 2489-2496.	14.6	147
77	Nickel as a co-catalyst for photocatalytic hydrogen evolution on graphitic-carbon nitride (sg-CN): what is the nature of the active species?. Chemical Communications, 2016, 52, 104-107.	4.1	147
78	Conjugated Microporous Polycarbazole Networks as Precursors for Nitrogen-Enriched Microporous Carbons for CO ₂ Storage and Electrochemical Capacitors. Chemistry of Materials, 2017, 29, 4885-4893.	6.7	140
79	Nitrogen- and phosphorus-co-doped carbons with tunable enhanced surface areas promoted by the doping additives. Chemical Communications, 2013, 49, 1208.	4.1	139
80	A Microporous Binolâ€Derived Phosphoric Acid. Angewandte Chemie - International Edition, 2012, 51, 5456-5459.	13.8	134
81	Room Temperature Synthesis of Heptazineâ€Based Microporous Polymer Networks as Photocatalysts for Hydrogen Evolution. Macromolecular Rapid Communications, 2013, 34, 1008-1013.	3.9	134
82	An Anionic Microporous Polymer Network Prepared by the Polymerization of Weakly Coordinating Anions. Angewandte Chemie - International Edition, 2013, 52, 12174-12178.	13.8	133
83	Anionic silicate organic frameworks constructed from hexacoordinate silicon centres. Nature Chemistry, 2017, 9, 977-982.	13.6	133
84	Nitrogen-Rich Conjugated Microporous Polymers: Facile Synthesis, Efficient Gas Storage, and Heterogeneous Catalysis. ACS Applied Materials & Samp; Interfaces, 2017, 9, 38390-38400.	8.0	131
85	2D Porous Carbons prepared from Layered Organic–Inorganic Hybrids and their Use as Oxygenâ€Reduction Electrocatalysts. Advanced Materials, 2017, 29, 1700707.	21.0	129
86	Atomic Feâ€"N _x Coupled Openâ€Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mgâ€"Air Batteries. Advanced Materials, 2018, 30, e1802669.	21.0	128
87	In Situ Synthesis of an Imidazolateâ€4â€amideâ€5â€imidate Ligand and Formation of a Microporous Zinc–Organic Framework with H ₂ â€and CO ₂ â€Storage Ability. Angewandte Chemie - International Edition, 2010, 49, 1258-1262.	13.8	126
88	Ultraâ€High Surface Area Nitrogenâ€Doped Carbon Aerogels Derived From a Schiffâ€Base Porous Organic Polymer Aerogel for CO ₂ Storage and Supercapacitors. Advanced Functional Materials, 2019, 29, 1904785.	14.9	126
89	Donor–acceptor covalent organic frameworks for visible light induced free radical polymerization. Chemical Science, 2019, 10, 8316-8322.	7.4	124
90	A Sustainable Template for Mesoporous Zeolite Synthesis. Journal of the American Chemical Society, 2014, 136, 2715-2718.	13.7	123

#	Article	IF	Citations
91	Templateâ€Free Tuning of Nanopores in Carbonaceous Polymers through Ionothermal Synthesis. Advanced Materials, 2009, 21, 897-901.	21.0	120
92	Exploring the "Goldilocks Zone―of Semiconducting Polymer Photocatalysts by Donor–Acceptor Interactions. Angewandte Chemie - International Edition, 2018, 57, 14188-14192.	13.8	118
93	A Covalent Organic Framework/Graphene Dual-Region Hydrogel for Enhanced Solar-Driven Water Generation. Journal of the American Chemical Society, 2022, 144, 3083-3090.	13.7	115
94	Rhenium-Metalated Polypyridine-Based Porous Polycarbazoles for Visible-Light CO ₂ Photoreduction. ACS Catalysis, 2019, 9, 3959-3968.	11.2	110
95	Microporous Thioxanthone Polymers as Heterogeneous Photoinitiators for Visible Light Induced Free Radical and Cationic Polymerizations. Macromolecules, 2014, 47, 4607-4614.	4.8	109
96	Structure–Activity Relationships in Bulk Polymeric and Sol–Gel-Derived Carbon Nitrides during Photocatalytic Hydrogen Production. Chemistry of Materials, 2014, 26, 1727-1733.	6.7	108
97	Alumina coated nickel nanoparticles as a highly active catalyst for dry reforming of methane. Applied Catalysis B: Environmental, 2015, 179, 122-127.	20.2	108
98	Silica-Templated Covalent Organic Framework-Derived Fe–N-Doped Mesoporous Carbon as Oxygen Reduction Electrocatalyst. Chemistry of Materials, 2019, 31, 3274-3280.	6.7	108
99	Triazineâ€Based Polymers as Nanostructured Supports for the Liquidâ€Phase Oxidation of Alcohols. Chemistry - A European Journal, 2011, 17, 1052-1057.	3.3	106
100	Metalâ€Organic Precursor–Derived Mesoporous Carbon Spheres with Homogeneously Distributed Molybdenum Carbide/Nitride Nanoparticles for Efficient Hydrogen Evolution in Alkaline Media. Advanced Functional Materials, 2019, 29, 1807419.	14.9	104
101	Donor–Acceptorâ€Type Heptazineâ€Based Polymer Networks for Photocatalytic Hydrogen Evolution. Energy Technology, 2016, 4, 744-750.	3.8	102
102	Solid-State Ion-Exchanged Cu/Mordenite Catalysts for the Direct Conversion of Methane to Methanol. ACS Catalysis, 2017, 7, 1403-1412.	11.2	102
103	Functional Carbon Materials From Ionic Liquid Precursors. Macromolecular Chemistry and Physics, 2012, 213, 1132-1145.	2.2	99
104	Tuning of gallery heights in a crystalline 2D carbon nitride network. Journal of Materials Chemistry A, 2013, 1, 1102-1107.	10.3	98
105	Mesoporous Carbon Nitride‶ungsten Oxide Composites for Enhanced Photocatalytic Hydrogen Evolution. ChemSusChem, 2015, 8, 1404-1410.	6.8	98
106	Hydrogen Evolution Reaction in a Largeâ€Scale Reactor using a Carbon Nitride Photocatalyst under Natural Sunlight Irradiation. Energy Technology, 2015, 3, 1014-1017.	3.8	97
107	Mesoporous graphitic carbon nitride as a versatile, metal-free catalyst for the cyclisation of functional nitriles and alkynes. New Journal of Chemistry, 2007, 31, 1455.	2.8	95
108	A Chiral Microporous Polymer Network as Asymmetric Heterogeneous Organocatalyst. Advanced Synthesis and Catalysis, 2011, 353, 3101-3106.	4.3	92

#	Article	IF	Citations
109	Nitrogen-doped coatings on carbon nanotubes and their stabilizing effect on Pt nanoparticles. Physical Chemistry Chemical Physics, 2012, 14, 6444.	2.8	92
110	Conversion of amorphous polymer networks to covalent organic frameworks under ionothermal conditions: a facile synthesis route for covalent triazine frameworks. Journal of Materials Chemistry A, 2015, 3, 24422-24427.	10.3	91
111	Mesoporous Melamine Resins by Soft Templating of Block-co-Polymer Mesophases. Chemistry of Materials, 2010, 22, 428-434.	6.7	90
112	Mesoporous Poly(benzimidazole) NetworksviaSolvent Mediated Templating of Hard Spheres. Macromolecules, 2007, 40, 1299-1304.	4.8	86
113	Metal-Free Phenanthrenequinone Cyclotrimer as an Effective Heterogeneous Catalyst. Journal of the American Chemical Society, 2009, 131, 11296-11297.	13.7	84
114	Room-Temperature Activation of Hydrogen by Semi-immobilized Frustrated Lewis Pairs in Microporous Polymer Networks. Journal of the American Chemical Society, 2017, 139, 3615-3618.	13.7	84
115	Silica Nanocasting of Simple Cellulose Derivatives: Towards Chiral Pore Systems with Long-Range Order and Chiral Optical Coatings. Advanced Functional Materials, 2003, 13, 763-766.	14.9	82
116	Binaphthalene-Based, Soluble Polyimides: The Limits of Intrinsic Microporosity. Macromolecules, 2009, 42, 8017-8020.	4.8	82
117	Mimicking Biosilicification: Programmed Coassembly of Peptide–Polymer Nanotapes and Silica. Angewandte Chemie - International Edition, 2007, 46, 9023-9026.	13.8	81
118	Cationic microporous polymer networks by polymerisation of weakly coordinating cations with CO ₂ -storage ability. Journal of Materials Chemistry A, 2014, 2, 11825-11829.	10.3	81
119	General Route to High Surface Area Covalent Organic Frameworks and Their Metal Oxide Composites as Magnetically Recoverable Adsorbents and for Energy Storage. ACS Macro Letters, 2017, 6, 1444-1450.	4.8	81
120	Bifunctional Electrocatalysts for Overall Water Splitting from an Iron/Nickelâ€Based Bimetallic Metal–Organic Framework/Dicyandiamide Composite. Angewandte Chemie, 2018, 130, 9059-9064.	2.0	81
121	Development of Molecular and Solid Catalysts for the Direct Lowâ€Temperature Oxidation of Methane to Methanol. ChemSusChem, 2010, 3, 277-282.	6.8	80
122	Quantification of photocatalytic hydrogen evolution. Physical Chemistry Chemical Physics, 2013, 15, 3466.	2.8	80
123	Highâ€Surfaceâ€Area TiO ₂ and TiN as Catalysts for the Cĩ£¿C Coupling of Alcohols and Ketones. ChemSusChem, 2008, 1, 444-449.	6.8	79
124	Accurate Evaluation of Active-Site Density (SD) and Turnover Frequency (TOF) of PGM-Free Metal–Nitrogen-Doped Carbon (MNC) Electrocatalysts using CO Cryo Adsorption. ACS Catalysis, 2019, 9, 4841-4852.	11.2	79
125	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Crossâ€Coupling. Angewandte Chemie - International Edition, 2022, 61, .	13.8	77
126	Intrinsically Sulfur―and Nitrogen oâ€doped Carbons from Thiazolium Salts. Chemistry - A European Journal, 2012, 18, 15416-15423.	3.3	76

#	Article	IF	Citations
127	Ordered mesoporous WO _{2.83} : selective reduction synthesis, exceptional localized surface plasmon resonance and enhanced hydrogen evolution reaction activity. Journal of Materials Chemistry A, 2018, 6, 2249-2256.	10.3	76
128	Exfoliation of Crystalline 2D Carbon Nitride: Thin Sheets, Scrolls and Bundles via Mechanical and Chemical Routes. Macromolecular Rapid Communications, 2013, 34, 850-854.	3.9	74
129	One-Pot Synthesis of Supported, Nanocrystalline Nickel Manganese Oxide for Dry Reforming of Methane. ACS Catalysis, 2013, 3, 224-229.	11.2	72
130	A polymer analogous reaction for the formation of imidazolium and NHC based porous polymer networks. Polymer Chemistry, 2013, 4, 1848.	3.9	70
131	Support material variation for the Mn O -Na2WO4/SiO2 catalyst. Catalysis Today, 2014, 228, 5-14.	4.4	69
132	Synthesis of Vinylene-Linked Covalent Organic Frameworks from Acetonitrile: Combining Cyclotrimerization and Aldol Condensation in One Pot. Journal of the American Chemical Society, 2020, 142, 14033-14038.	13.7	68
133	"Everything is surface― tunable polymer organic frameworks with ultrahigh dye sorption capacity. Chemical Communications, 2008, , 5815.	4.1	66
134	A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Singleâ€lon Li ⁺ Solid Electrolyte. Angewandte Chemie - International Edition, 2018, 57, 16683-16687.	13.8	65
135	Macroscale Conjugated Microporous Polymers: Controlling Versatile Functionalities Over Several Dimensions. Advanced Materials, 2022, 34, e2104952.	21.0	65
136	Carbon Colloids Prepared by Hydrothermal Carbonization as Efficient Fuel for Indirect Carbon Fuel Cells. Chemistry of Materials, 2009, 21, 1170-1172.	6.7	63
137	High-Surface-Area SBA-15 with Enhanced Mesopore Connectivity by the Addition of Poly(vinyl alcohol). Chemistry of Materials, 2011, 23, 2062-2067.	6.7	63
138	Reaction Mechanism of Aerobic Oxidation of Alcohols Conducted on Activated arbon‧upported Cobalt Oxide Catalysts. Chemistry - A European Journal, 2011, 17, 7112-7117.	3.3	63
139	Ionothermal Route to Layered Two-Dimensional Polymer-Frameworks Based on Heptazine Linkers. Macromolecules, 2010, 43, 6639-6645.	4.8	61
140	Organosilicas with Chiral Bridges and Self-Generating Mesoporosity. Chemistry of Materials, 2007, 19, 2649-2657.	6.7	59
141	Reversible Doping of a Dithienothiopheneâ€Based Conjugated Microporous Polymer. Chemistry - A European Journal, 2015, 21, 9306-9311.	3.3	59
142	One-Dimensional Porous Carbon/Platinum Composites for Nanoscale Electrodes. Angewandte Chemie - International Edition, 2007, 46, 3464-3467.	13.8	58
143	Influence of Periodic Nitrogen Functionality on the Selective Oxidation of Alcohols. Chemistry - an Asian Journal, 2012, 7, 387-393.	3.3	57
144	Polymeric Carbon Nitride/Mesoporous Silica Composites as Catalyst Support for Au and Pt Nanoparticles. Chemistry - A European Journal, 2014, 20, 2872-2878.	3.3	57

#	Article	IF	Citations
145	Boosting Visibleâ€Lightâ€Driven Photocatalytic Hydrogen Evolution with an Integrated Nickel Phosphide–Carbon Nitride System. Angewandte Chemie, 2017, 129, 1675-1679.	2.0	57
146	Conjugated Microporous Polymer Network Grafted Carbon Nanotube Fibers with Tunable Redox Activity for Efficient Flexible Wearable Energy Storage. Chemistry of Materials, 2020, 32, 8276-8285.	6.7	57
147	Copperâ€Free Sonogashira Coupling for Highâ€Surfaceâ€Area Conjugated Microporous Poly(aryleneethynylene) Networks. Chemistry - A European Journal, 2016, 22, 7179-7183.	3.3	56
148	Active Salt/Silicaâ€Templated 2D Mesoporous FeCoâ€N _{<i>x</i>} â€Carbon as Bifunctional Oxygen Electrodes for Zinc–Air Batteries. Angewandte Chemie, 2018, 130, 1874-1880.	2.0	56
149	Cobaltâ€Exchanged Poly(Heptazine Imides) as Transition Metal–N <i>_x</i> Electrocatalysts for the Oxygen Evolution Reaction. Advanced Materials, 2020, 32, e1903942.	21.0	56
150	Acid catalyzed synthesis of carbonyl-functionalized microporous ladder polymers with high surface area. Polymer Chemistry, 2010, 1, 283.	3.9	55
151	Adsorption of Pyruvic and Succinic Acid by Amine-Functionalized SBA-15 for the Purification of Succinic Acid from Fermentation Broth. Journal of Physical Chemistry C, 2007, 111, 13076-13086.	3.1	54
152	Metalâ€Free Photocatalytic Graphitic Carbon Nitride on pâ€Type Chalcopyrite as a Composite Photocathode for Lightâ€Induced Hydrogen Evolution. ChemSusChem, 2012, 5, 1227-1232.	6.8	53
153	Metallfreie Aktivierung von CO2 mit mesoporösem graphitischem Kohlenstoffnitrid. Angewandte Chemie, 2007, 119, 2773-2776.	2.0	52
154	Tunable absorption and emission wavelength in conjugated microporous polymers by copolymerization. Polymer Chemistry, 2011, 2, 1950.	3.9	51
155	A mesoporous poly(benzimidazole) network as a purely organic heterogeneous catalyst for the Knoevenagel condensation. Catalysis Communications, 2008, 10, 243-247.	3.3	49
156	Mesoporous Indium Tin Oxide as a Novel Platform for Bioelectronics. ChemCatChem, 2010, 2, 839-845.	3.7	49
157	A Carbon/Titanium Vanadium Nitride Composite for Lithium Storage. ChemPhysChem, 2010, 11, 3219-3223.	2.1	49
158	Facile one-pot synthesis of Pt nanoparticles /SBA-15: an active and stable material for catalytic applications. Energy and Environmental Science, 2011, 4, 2020.	30.8	49
159	lonic Liquid-Assisted Synthesis of Mesoporous Carbons with Surface-Enriched Nitrogen for the Hydrogen Evolution Reaction. ACS Applied Materials & Samp; Interfaces, 2018, 10, 3912-3920.	8.0	49
160	Influence of Spatial Restrictions on Equilibrium Reactions:  A Case Study about the Excimer Formation of Pyrene. Journal of Physical Chemistry B, 2003, 107, 5081-5087.	2.6	48
161	Targeted control over the porosities and functionalities of conjugated microporous polycarbazole networks for CO ₂ -selective capture and H ₂ storage. Polymer Chemistry, 2017, 8, 7240-7247.	3.9	48
162	A Molecular Precursor Approach to Tunable Porous Tin-Rich Indium Tin Oxide with Durable High Electrical Conductivity for Bioelectronic Devices. Chemistry of Materials, 2011, 23, 1798-1804.	6.7	47

#	Article	IF	CITATIONS
163	A Tetrathiafulvalene (TTF)â€Conjugated Microporous Polymer Network. Chemistry - A European Journal, 2014, 20, 9543-9548.	3.3	47
164	Sol–gel method for synthesis of Mn–Na2WO4/SiO2 catalyst for methane oxidative coupling. Catalysis Today, 2014, 236, 12-22.	4.4	47
165	Aromatic, microporous polymer networks with high surface area generated in Friedel–Crafts-type polycondensations. Polymer Chemistry, 2011, 2, 2186.	3.9	46
166	Suppression of Competing Reaction Channels by Pb Adatom Decoration of Catalytically Active Cu Surfaces During CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 1482-1488.	11.2	46
167	Synthesis of High-Surface-Area TiN/Carbon Composite Materials with Hierarchical Porosity via "Reactive Templating― Chemistry of Materials, 2008, 20, 7383-7389.	6.7	43
168	Bridging the Materials Gap in Catalysis: Entrapment of Molecular Catalysts in Functional Supports and Beyond. Angewandte Chemie - International Edition, 2009, 48, 1890-1892.	13.8	41
169	Silica material variation for the MnxOy-Na2WO4/SiO2. Applied Catalysis A: General, 2016, 525, 168-179.	4.3	41
170	Stepwise Methaneâ€toâ€Methanol Conversion on CuO/SBAâ€15. Chemistry - A European Journal, 2018, 24, 12592-12599.	3.3	41
171	Synthesis and characterization of highly amine functionalized mesoporous organosilicas by an "all-in-one―approach. Journal of Materials Chemistry, 2005, 15, 4010.	6.7	40
172	Facile Synthesis of Nitrogen-Rich Porous Organic Polymers for Latent Heat Energy Storage. ACS Applied Energy Materials, 2018, 1, 6535-6540.	5.1	40
173	Surface site density and utilization of platinum group metal (PGM)-free Fe–NC and FeNi–NC electrocatalysts for the oxygen reduction reaction. Chemical Science, 2021, 12, 384-396.	7.4	40
174	Vinyleneâ€Linked Covalent Organic Frameworks by Baseâ€Catalyzed Aldol Condensation. Angewandte Chemie, 2019, 131, 15007-15012.	2.0	39
175	Tuning the Porosity and Photocatalytic Performance of Triazineâ€Based Graphdiyne Polymers through Polymorphism. ChemSusChem, 2019, 12, 194-199.	6.8	39
176	Design of PtZn nanoalloy catalysts for propane dehydrogenation through interface tailoring <i>via</i> atomic layer deposition. Catalysis Science and Technology, 2021, 11, 484-493.	4.1	39
177	Fluorescent Sulphur―and Nitrogenâ€Containing Porous Polymers with Tuneable Donor–Acceptor Domains for Lightâ€Driven Hydrogen Evolution. Chemistry - A European Journal, 2018, 24, 11916-11921.	3.3	38
178	Ni0.05Mn0.95O catalysts for the dry reforming of methane. Catalysis Today, 2015, 242, 111-118.	4.4	37
179	Oxidative coupling of methane on the Na2WO4-MnxOy catalyst: COK-12 as an inexpensive alternative to SBA-15. Catalysis Communications, 2016, 85, 75-78.	3.3	37
180	Controlling hydrogenation selectivity with Pd catalysts on carbon nitrides functionalized silica. Journal of Catalysis, 2015, 326, 38-42.	6.2	36

#	Article	IF	CITATIONS
181	Tailored Band Gaps in Sulfur―and Nitrogenâ€Containing Porous Donor–Acceptor Polymers. Chemistry - A European Journal, 2017, 23, 13023-13027.	3.3	35
182	Structure–Thermodynamicâ€Property Relationships in Cyanovinylâ€Based Microporous Polymer Networks for the Future Design of Advanced Carbon Capture Materials. Advanced Functional Materials, 2017, 27, 1700233.	14.9	34
183	Anionische, mikroporĶse Polymernetzwerke durch Polymerisation eines schwach koordinierenden Anions. Angewandte Chemie, 2013, 125, 12396-12400.	2.0	32
184	Synthesis of mesoporous composite materials of nitrogen-doped carbon and silica using a reactive surfactant approach. Journal of Materials Chemistry, 2011, 21, 15537.	6.7	31
185	Tuning porosity and activity of microporous polymer network organocatalysts by co-polymerisation. Chemical Communications, 2014, 50, 3347-3349.	4.1	30
186	PdH _{<i>x</i>} Entrapped in a Covalent Triazine Framework Modulates Selectivity in Glycerol Oxidation. ChemCatChem, 2015, 7, 2149-2154.	3.7	30
187	Cyanamide route to calcium–manganese oxide foams for water oxidation. Dalton Transactions, 2013, 42, 16920.	3.3	29
188	Microporous Polymer Networks (MPNs) Made in Metal-Free Regimes: Systematic Optimization of a Synthetic Protocol toward N-Arylcarbazole-Based MPNs. ACS Macro Letters, 2013, 2, 380-383.	4.8	29
189	Microporous polymer network films covalently bound to gold electrodes. Chemical Communications, 2015, 51, 4283-4286.	4.1	29
190	Light-Switchable Polymers of Intrinsic Microporosity. Chemistry of Materials, 2016, 28, 8523-8529.	6.7	29
191	Design of an active and stable catalyst for dry reforming of methane via molecular layer deposition. Catalysis Today, 2021, 362, 47-54.	4.4	29
192	Imidazoliumâ€functionalized SBAâ€15 type silica: efficient organocatalysts for Henry and cycloaddition reactions. Applied Organometallic Chemistry, 2013, 27, 290-299.	3.5	28
193	Covalent Organic Framework (COF) Derived Niâ€N Catalysts for Electrochemical CO ₂ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
194	Impact of Carbon N-Doping and Pyridinic-N Content on the Fuel Cell Performance and Durability of Carbon-Supported Pt Nanoparticle Catalysts. ACS Applied Materials & Samp; Interfaces, 2022, 14, 18420-18430.	8.0	28
195	Cobalt Nanocrystals Encapsulated in Heteroatomâ€Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution. Small, 2018, 14, e1803232.	10.0	27
196	Pd nanoparticles confined in mesoporous N-doped carbon silica supports: a synergistic effect between catalyst and support. Catalysis Science and Technology, 2020, 10, 1385-1394.	4.1	27
197	An Isoreticular Family of Microporous Metal–Organic Frameworks Based on Zinc and 2â€Substituted Imidazolateâ€4â€amideâ€5â€imidate: Syntheses, Structures and Properties. Chemistry - A European Journal, 2012 18, 11630-11640.	2,3.3	26
198	Much ado about nothing – a decade of porous materials research. Nature Communications, 2020, 11, 4985.	12.8	26

#	Article	IF	Citations
199	Superstructures of Organic–Polyoxometalate Coâ€crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie - International Edition, 2022, 61, .	13.8	26
200	Controlled Formation of Nickel Oxide Nanoparticles on Mesoporous Silica using Molecular Ni ₄ O ₄ Clusters as Precursors: Enhanced Catalytic Performance for Dry Reforming of Methane. ChemCatChem, 2015, 7, 1280-1284.	3.7	25
201	Confinement of Cobalt Species in Mesoporous N-Doped Carbons and the Impact on Nitroarene Hydrogenation. ACS Sustainable Chemistry and Engineering, 2020, 8, 11171-11182.	6.7	25
202	Assembly of spherical micelles in 2D physical confinements and their replication into mesoporous silica nanorods. Journal of Materials Chemistry, 2007, 17, 4558.	6.7	24
203	Boosting the performance of Ni/Al ₂ O ₃ for the reverse water gas shift reaction through formation of CuNi nanoalloys. Catalysis Science and Technology, 2022, 12, 474-487.	4.1	24
204	Mixed gas adsorption of carbon dioxide and methane on a series of isoreticular microporous metal–organic frameworks based on 2-substituted imidazolate-4-amide-5-imidates. Journal of Materials Chemistry, 2012, 22, 10221.	6.7	22
205	Solar hydrogen evolution using metal-free photocatalytic polymeric carbon nitride/CuInS2 composites as photocathodes. Journal of Materials Chemistry A, 2013, , .	10.3	22
206	Tailoring of ordered mesoporous silica COK-12: Room temperature synthesis of mesocellular foam and multilamellar vesicles. Microporous and Mesoporous Materials, 2018, 267, 142-149.	4.4	22
207	Exploring the "Goldilocks Zone―of Semiconducting Polymer Photocatalysts by Donor–Acceptor Interactions. Angewandte Chemie, 2018, 130, 14384-14388.	2.0	22
208	Protonated Imine‣inked Covalent Organic Frameworks for Photocatalytic Hydrogen Evolution. Angewandte Chemie, 2021, 133, 19950-19956.	2.0	22
209	Finding the Sweet Spot of Photocatalysis─A Case Study Using Bipyridine-Based CTFs. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14182-14192.	8.0	22
210	Metal-Assisted and Solvent-Mediated Synthesis of Two-Dimensional Triazine Structures on Gram Scale. Journal of the American Chemical Society, 2020, 142, 12976-12986.	13.7	21
211	Nanoparticles and Nanosheets of Aromatic Polyimides via Polycondensation in Controlled Pore Geometries. Macromolecules, 2004, 37, 4360-4364.	4.8	20
212	Mechanism of NO reduction by CO over Pt/SBA-15. Catalysis Communications, 2014, 50, 69-72.	3.3	19
213	Electrospun Silicaâ€"Polybenzimidazole Nanocomposite Fibers. Macromolecular Materials and Engineering, 2008, 293, 815-819.	3.6	18
214	A One-Pot Approach to Mesoporous Metal Oxide Ultrathin Film Electrodes Bearing One Metal Nanoparticle per Pore with Enhanced Electrocatalytic Properties. Chemistry of Materials, 2013, 25, 4645-4652.	6.7	18
215	Impact of the reaction conditions on the photocatalytic reduction of water on mesoporous polymeric carbon nitride under sunlight irradiation. International Journal of Hydrogen Energy, 2014, 39, 10108-10120.	7.1	18
216	A Novel Approach Towards Carbon–Ru Electrodes with Mesoporosity for Supercapacitors. ChemPhysChem, 2007, 8, 1013-1015.	2.1	17

#	Article	IF	Citations
217	Chlorine borrowing: an efficient method for an easier use of alcohols as alkylation agents. Green Chemistry, 2009, 11, 34-37.	9.0	17
218	Salt-templated porous carbon–carbon composite electrodes for application in vanadium redox flow batteries. Journal of Materials Chemistry A, 2017, 5, 25193-25199.	10.3	17
219	Batch and continuous synthesis upscaling of powder and monolithic ordered mesoporous silica COK-12. Microporous and Mesoporous Materials, 2018, 256, 102-110.	4.4	17
220	Promoting Photocatalytic Hydrogen Evolution Activity of Graphitic Carbon Nitride with Holeâ€Transfer Agents. ChemSusChem, 2021, 14, 306-312.	6.8	17
221	Graphitic carbon nitride for photocatalytic degradation of sulfamethazine in aqueous solution under simulated sunlight irradiation. RSC Advances, 2015, 5, 105731-105734.	3.6	16
222	Photocatalytic CO ₂ Reduction by Mesoporous Polymeric Carbon Nitride Photocatalysts. Journal of Nanoscience and Nanotechnology, 2018, 18, 5636-5644.	0.9	16
223	Carbon/nanostructured Ru composites as electrodes for supercapacitors. New Carbon Materials, 2007, 22, 302-306.	6.1	15
224	Dendritic Core–Multishell Polymer Templates for the Synthesis of Pt Nanoparticleâ€Loaded Porous Silica and their Application as Catalysts for the Enantioselective Hydrogenation of Ethyl Pyruvate. ChemCatChem, 2010, 2, 807-811.	3.7	15
225	Influence of MoS2 on Activity and Stability of Carbon Nitride in Photocatalytic Hydrogen Production. Catalysts, 2019, 9, 695.	3.5	15
226	Impact of operating conditions for the continuous-flow degradation of diclofenac with immobilized carbon nitride photocatalysts. Journal of Photochemistry and Photobiology A: Chemistry, 2020, 388, 112182.	3.9	15
227	Atomic Layer Deposition of ZnO on Mesoporous Silica: Insights into Growth Behavior of ZnO via In-Situ Thermogravimetric Analysis. Nanomaterials, 2020, 10, 981.	4.1	15
228	In situ cyclodextrin-based homogeneous incorporation of metal (M = Pd, Pt, Ru) nanoparticles into silica with bimodal pore structureElectronic supplementary information (ESI) available: SEM images and isotherm N2 sorption of the cyclodextrin-based homogeneous incorporation of Pd nanoparticles into silica with bimodal pore structure. See http://www.rsc.org/suppdata/cc/b2/b210590j/. Chemical	4.1	14
229	Communications, 2003, , 262-263. Synthesis and Opto-Electronic Properties of Cholesteric Cellulose Esters. Cellulose, 2003, 10, 37-52.	4.9	13
230	Applying thermo-destabilization of microemulsions as a new method for co-catalyst loading on mesoporous polymeric carbon nitride – towards large scale applications. RSC Advances, 2014, 4, 50017-50026.	3.6	13
231	XPS studies on dispersed and immobilised carbon nitrides used for dye degradation. Photochemical and Photobiological Sciences, 2019, 18, 1833-1839.	2.9	13
232	A molecular approach to the synthesis of platinum-decorated mesoporous graphitic carbon nitride as selective CO2 reduction photocatalyst. Journal of CO2 Utilization, 2021, 50, 101574.	6.8	13
233	Rational design of tandem catalysts using a core–shell structure approach. Nanoscale Advances, 2021, 3, 3454-3459.	4.6	12
234	lonic Nanoparticle Networks as Solid State Catalysts. European Journal of Inorganic Chemistry, 2012, 2012, 5305-5311.	2.0	11

#	Article	IF	Citations
235	Ruthenium nanoparticles supported on carbon-based nanoallotropes as co-catalyst to enhance the photocatalytic hydrogen evolution activity of carbon nitride. Renewable Energy, 2021, 168, 668-675.	8.9	11
236	In situ synthesis of amide-imidate-imidazolate ligand and formation of metal-organic frameworks: Application for gas storage. Microporous and Mesoporous Materials, 2015, 216, 2-12.	4.4	10
237	Relations between Structure, Activity and Stability in C3N4 Based Photocatalysts Used for Solar Hydrogen Production. Catalysts, 2018, 8, 52.	3.5	10
238	A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Singleâ€lon Li + Solid Electrolyte. Angewandte Chemie, 2018, 130, 16925-16929.	2.0	8
239	Emerged carbon nanomaterials from metal-organic precursors for electrochemical catalysis in energy conversion., 2020,, 393-423.		8
240	Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Roomâ€Temperature Gas Phase Catalysis. Angewandte Chemie - International Edition, 2020, 59, 19830-19834.	13.8	8
241	Covalent Organic Framework (COF) Derived Niâ€Nâ€C Catalysts for Electrochemical CO ₂ Reduction: Unraveling Fundamental Kinetic and Structural Parameters of the Active Sites. Angewandte Chemie, 2022, 134, .	2.0	8
242	One-Pot Synthesis of Metal-Doped Mesoporous Materials from (Dicyanamido)metallate Precursors. European Journal of Inorganic Chemistry, 2012, 2012, 4105-4116.	2.0	7
243	Two-step synthesis of Fe ₂ O ₃ and Co ₃ O ₄ nanoparticles: towards a general method for synthesizing nanocrystalline metal oxides with high surface area and thermal stability. RSC Advances, 2012, 2, 121-124.	3.6	7
244	Hydrothermal polymerization of porous aromatic polyimide networks and machine learning-assisted computational morphology evolution interpretation. Journal of Materials Chemistry A, 2021, 9, 19754-19769.	10.3	7
245	A Zeroâ€Emission Fuel Cell that uses Carbonaceous Colloids from Biomass Waste as Fuel Source. ChemSusChem, 2010, 3, 223-225.	6.8	6
246	Acridineâ€Functionalized Covalent Organic Frameworks (COFs) as Photocatalysts for Metallaphotocatalytic Câ^'N Crossâ€Coupling. Angewandte Chemie, 2022, 134, .	2.0	6
247	Tunable Porosity in Bridged Organosilicas Using Self-Organizing Precursors. Langmuir, 2008, 24, 12539-12546.	3.5	5
248	Editorial: Nanochemical Concepts for a Sustainable Energy Supply. ChemSusChem, 2010, 3, 120-120.	6.8	5
249	Chemical RedOx Properties of a Donor-Acceptor Conjugated Microporous Dithienothiophene-Benzene co-Polymer FormedviaSuzuki-Miyaura Cross-coupling. ChemistrySelect, 2016, 1, 748-751.	1.5	5
250	Nanoporous Polymers. , 2013, , 1-42.		5
251	Development of a Reactor for Standardized Quantification of the Photocatalytic Hydrogen Production. Chemie-Ingenieur-Technik, 2013, 85, 500-507.	0.8	4
252	Water Splitting: Cobalt Nanocrystals Encapsulated in Heteroatom-Rich Porous Carbons Derived from Conjugated Microporous Polymers for Efficient Electrocatalytic Hydrogen Evolution (Small 42/2018). Small, 2018, 14, 1870193.	10.0	4

#	Article	lF	CITATIONS
253	2 <i>H</i> â€Naphthopyranâ€Based Threeâ€State Systems: From Solution Studies to Photoresponsive Organic/Inorganic Hybrid Materials. ChemPhotoChem, 2018, 2, 952-958.	3.0	3
254	Immobilization of an Iridium Pincer Complex in a Microporous Polymer for Application in Roomâ€Temperature Gas Phase Catalysis. Angewandte Chemie, 2020, 132, 20002-20006.	2.0	3
255	Insights into the light-driven hydrogen evolution reaction of mesoporous graphitic carbon nitride decorated with Pt or Ru nanoparticles. Dalton Transactions, 2022, 51, 731-740.	3.3	3
256	Mg-Air Batteries: Atomic Fe-Nx Coupled Open-Mesoporous Carbon Nanofibers for Efficient and Bioadaptable Oxygen Electrode in Mg-Air Batteries (Adv. Mater. 40/2018). Advanced Materials, 2018, 30, 1870303.	21.0	2
257	Superstructures of Organic–Polyoxometalate Coâ€crystals as Precursors for Hydrogen Evolution Electrocatalysts. Angewandte Chemie, 2022, 134, .	2.0	2
258	Enhancing Metalâ€Support Interaction in Heterogeneous Catalysts using Functional Supports. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 2045-2045.	1.2	0
259	Dicyanamide Ionic Liquids: A Versatile Precursor System for Advanced Mesoporous Materials and Functional Composites. Materials Research Society Symposia Proceedings, 2012, 1473, 13.	0.1	0
260	Palladium nanoparticles on modified cellulose as a novel catalyst for low temperature gas reactions. Cellulose, 2021, 28, 9135-9147.	4.9	0