Hui Jing

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3415269/publications.pdf

Version: 2024-02-01

27 papers	1,922 citations	279798 23 h-index	28 g-index
33	33 docs citations	33	2653
all docs		times ranked	citing authors

#	Article	IF	CITATIONS
1	Phospholipase $\hat{Cl^3}$ 2 regulates endocannabinoid and eicosanoid networks in innate immune cells. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
2	Targeting glioblastoma signaling and metabolism with a re-purposed brain-penetrant drug. Cell Reports, 2021, 37, 109957.	6.4	38
3	Simultaneous Inhibition of SIRT2 Deacetylase and Defatty-Acylase Activities via a PROTAC Strategy. ACS Medicinal Chemistry Letters, 2020, 11, 2305-2311.	2.8	29
4	Three-dimensional bioprinted glioblastoma microenvironments model cellular dependencies and immune interactions. Cell Research, 2020, 30, 833-853.	12.0	149
5	Blockade of the Lysophosphatidylserine Lipase ABHD12 Potentiates Ferroptosis in Cancer Cells. ACS Chemical Biology, 2020, 15, 871-877.	3.4	25
6	SIRT2 and Lysine Fatty Acylation Regulate the Activity of RalB and Cell Migration. ACS Chemical Biology, 2019, 14, 2014-2023.	3.4	25
7	Discovery and Optimization of Selective and in Vivo Active Inhibitors of the Lysophosphatidylserine Lipase $\hat{l}\pm\hat{l}^2$ -Hydrolase Domain-Containing 12 (ABHD12). Journal of Medicinal Chemistry, 2019, 62, 1643-1656.	6.4	27
8	Non-oncogene Addiction to SIRT3 Plays a Critical Role in Lymphomagenesis. Cancer Cell, 2019, 35, 916-931.e9.	16.8	70
9	A Smallâ€Molecule SIRT2 Inhibitor That Promotes Kâ€Ras4a Lysine Fattyâ€Acylation. ChemMedChem, 2019, 14, 744-748.	3.2	36
10	Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b. ACS Central Science, 2018, 4, 71-80.	11.3	25
11	Ubiquitin-dependent degradation of CDK2 drives the therapeutic differentiation of AML by targeting PRDX2. Blood, 2018, 131, 2698-2711.	1.4	66
12	Selective blockade of the lyso-PS lipase ABHD12 stimulates immune responses in vivo. Nature Chemical Biology, 2018, 14, 1099-1108.	8.0	55
13	The Spastic Paraplegia-Associated Phospholipase DDHD1 Is a Primary Brain Phosphatidylinositol Lipase. Biochemistry, 2018, 57, 5759-5767.	2.5	22
14	Direct Comparison of SIRT2 Inhibitors: Potency, Specificity, Activityâ€Dependent Inhibition, and Onâ€Target Anticancer Activities. ChemMedChem, 2018, 13, 1890-1894.	3.2	38
15	SIRT6 regulates Ras-related protein R-Ras2 by lysine defatty-acylation. ELife, 2017, 6, .	6.0	62
16	SIRT2 and lysine fatty acylation regulate the transforming activity of K-Ras4a. ELife, 2017, 6, .	6.0	70
17	The Substrate Specificity of Sirtuins. Annual Review of Biochemistry, 2016, 85, 405-429.	11.1	208
18	A SIRT2-Selective Inhibitor Promotes c-Myc Oncoprotein Degradation and Exhibits Broad Anticancer Activity. Cancer Cell, 2016, 29, 297-310.	16.8	183

Hui Jing

#	ARTICLE	IF	CITATION
19	Lessons learned from a SIRT2-selective inhibitor. Oncotarget, 2016, 7, 22971-22972.	1.8	2
20	Sirtuins in Epigenetic Regulation. Chemical Reviews, 2015, 115, 2350-2375.	47.7	205
21	Efficient Demyristoylase Activity of SIRT2 Revealed by Kinetic and Structural Studies. Scientific Reports, 2015, 5, 8529.	3.3	143
22	Sirtuin inhibitors as anticancer agents. Future Medicinal Chemistry, 2014, 6, 945-966.	2.3	148
23	Involvement of mitogenâ€ectivated protein kinase in signal transducer and activator of transcriptionâ€1 mediated differentiation induced by bortezomib in acute myeloid leukemia cells. Molecular Carcinogenesis, 2013, 52, 18-28.	2.7	8
24	Bortezomib Sensitizes Human Acute Myeloid Leukemia Cells to All-⟨i⟩Trans⟨/i⟩-Retinoic Acid–Induced Differentiation by Modifying the RARα/STAT1 Axis. Molecular Cancer Therapeutics, 2013, 12, 195-206.	4.1	38
25	MEK/ERK Dependent Activation of STAT1 Mediates Dasatinib-Induced Differentiation of Acute Myeloid Leukemia. PLoS ONE, 2013, 8, e66915.	2.5	35
26	The ubiquitin-proteasome pathway plays essential roles in ATRA-induced leukemia cells G sub> 0 / g sub> 1 / g sub>phase arrest and transition into granulocytic differentiation. Cancer Biology and Therapy, 2010, 10, 1157-1167.	3.4	23
27	Abrogation of Akt signaling by Isobavachalcone contributes to its anti-proliferative effects towards human cancer cells. Cancer Letters, 2010, 294, 167-177.	7.2	80