Guoxin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412919/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Graphene in Mice: Ultrahigh In Vivo Tumor Uptake and Efficient Photothermal Therapy. Nano Letters, 2010, 10, 3318-3323.	9.1	2,213
2	Tuning Electronic Structure of NiFe Layered Double Hydroxides with Vanadium Doping toward High Efficient Electrocatalytic Water Oxidation. Advanced Energy Materials, 2018, 8, 1703341.	19.5	505
3	Evaluation Criteria for Reduced Graphene Oxide. Journal of Physical Chemistry C, 2011, 115, 11327-11335.	3.1	451
4	A general route <i>via</i> formamide condensation to prepare atomically dispersed metal–nitrogen–carbon electrocatalysts for energy technologies. Energy and Environmental Science, 2019, 12, 1317-1325.	30.8	290
5	A metallic CoS ₂ nanopyramid array grown on 3D carbon fiber paper as an excellent electrocatalyst for hydrogen evolution. Journal of Materials Chemistry A, 2015, 3, 6306-6310.	10.3	145
6	One-step scalable preparation of N-doped nanoporous carbon as a high-performance electrocatalyst for the oxygen reduction reaction. Nano Research, 2013, 6, 293-301.	10.4	142
7	Boosting the bifunctional oxygen electrocatalytic performance of atomically dispersed Fe site via atomic Ni neighboring. Applied Catalysis B: Environmental, 2020, 274, 119091.	20.2	130
8	A 3D Nanoporous Ni–Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1138-1144.	3.4	113
9	Single Crystalline Ultrathin Nickel–Cobalt Alloy Nanosheets Array for Direct Hydrazine Fuel Cells. Advanced Science, 2017, 4, 1600179.	11.2	104
10	Flexible carbon nanofiber film with diatomic Fe-Co sites for efficient oxygen reduction and evolution reactions in wearable zinc-air batteries. Nano Energy, 2021, 87, 106147.	16.0	103
11	Atomically Dispersed Fe-N4 Modified with Precisely Located S for Highly Efficient Oxygen Reduction. Nano-Micro Letters, 2020, 12, 116.	27.0	99
12	Unconventional Carbon: Alkaline Dehalogenation of Polymers Yields Nâ€Đoped Carbon Electrode for Highâ€Performance Capacitive Energy Storage. Advanced Functional Materials, 2016, 26, 3340-3348.	14.9	95
13	Superaerophobic RuO ₂ â€Based Nanostructured Electrode for Highâ€Performance Chlorine Evolution Reaction. Small, 2017, 13, 1602240.	10.0	93
14	Polymer Dehalogenation-Enabled Fast Fabrication of N,S-Codoped Carbon Materials for Superior Supercapacitor and Deionization Applications. ACS Applied Materials & Interfaces, 2017, 9, 29753-29759.	8.0	81
15	Highly Crystallized Cubic Cattierite CoS 2 for Electrochemically Hydrogen Evolution over Wide pH Range from 0 to 14. Electrochimica Acta, 2014, 148, 170-174.	5.2	80
16	Room-temperature synthetic NiFe layered double hydroxide with different anions intercalation as an excellent oxygen evolution catalyst. RSC Advances, 2015, 5, 55131-55135.	3.6	77
17	Hierarchical peony-like FeCo-NC with conductive network and highly active sites as efficient electrocatalyst for rechargeable Zn-air battery. Nano Research, 2020, 13, 1090-1099.	10.4	77
18	Hierarchical Ni0.25Co0.75(OH)2 nanoarrays for a high-performance supercapacitor electrode prepared by an in situ conversion process. Journal of Materials Chemistry A, 2013, 1, 8327.	10.3	74

#	Article	IF	CITATIONS
19	ZnO-promoted dechlorination for hierarchically nanoporous carbon as superior oxygen reduction electrocatalyst. Nano Energy, 2016, 26, 241-247.	16.0	72
20	Enhancement of capacitive deionization capacity of hierarchical porous carbon. Journal of Materials Chemistry A, 2015, 3, 12730-12737.	10.3	69
21	A highly-efficient oxygen evolution electrode based on defective nickel-iron layered double hydroxide. Science China Materials, 2018, 61, 939-947.	6.3	69
22	Tuning the wettability of carbon nanotube arrays for efficient bifunctional catalysts and Zn–air batteries. Journal of Materials Chemistry A, 2017, 5, 7103-7110.	10.3	62
23	A ternary B, N, P-Doped carbon material with suppressed water splitting activity for high-energy aqueous supercapacitors. Carbon, 2020, 170, 127-136.	10.3	62
24	Improving Energy Conversion Efficiency of Dye-Sensitized Solar Cells by Modifying TiO ₂ Photoanodes with Nitrogen-Reduced Graphene Oxide. ACS Sustainable Chemistry and Engineering, 2014, 2, 1234-1240.	6.7	59
25	Using an AlCl ₃ /Urea Ionic Liquid Analog Electrolyte for Improving the Lifetime of Aluminumâ€Sulfur Batteries. ChemElectroChem, 2018, 5, 3607-3611.	3.4	49
26	Ultrasmall NiFe layered double hydroxide strongly coupled on atomically dispersed FeCo-NC nanoflowers as efficient bifunctional catalyst for rechargeable Zn-air battery. Science China Materials, 2020, 63, 1182-1195.	6.3	44
27	Ultrathin atomic Mn-decorated formamide-converted N-doped carbon for efficient oxygen reduction reaction. Nanoscale, 2019, 11, 15900-15906.	5.6	43
28	N-doped crumpled graphene: bottom-up synthesis and its superior oxygen reduction performance. Science China Materials, 2016, 59, 337-347.	6.3	39
29	Pyrolysis-free formamide-derived N-doped carbon supporting atomically dispersed cobalt as high-performance bifunctional oxygen electrocatalyst. Journal of Energy Chemistry, 2020, 49, 283-290.	12.9	35
30	A catalyst-free preparation of conjugated poly iron-phthalocyanine and its superior oxygen reduction reaction activity. Chemical Engineering Journal, 2022, 445, 136784.	12.7	33
31	Low-Cost Gel Polymer Electrolyte for High-Performance Aluminum-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 28164-28170.	8.0	31
32	Cicada wing decorated by silver nanoparticles as low-cost and active/sensitive substrates for surface-enhanced Raman scattering. Journal of Applied Physics, 2014, 115, .	2.5	30
33	Rational design of graphene oxide and its hollow CoO composite for superior oxygen reduction reaction. Science China Materials, 2015, 58, 534-542.	6.3	30
34	Confined synthesis of MoS2 with rich co-doped edges for enhanced hydrogen evolution performance. Journal of Energy Chemistry, 2022, 70, 18-26.	12.9	29
35	Tetrafunctional template-assisted strategy to preciously construct co-doped Sb@C nanofiber with longitudinal tunnels for ultralong-life and high-rate sodium storage. Energy Storage Materials, 2022, 48, 90-100.	18.0	27
36	Cobaltâ€Embedded Nitrogenâ€Doped Carbon Nanotubes as Highâ€Performance Bifunctional Oxygen Catalysts. Energy Technology, 2017, 5, 1265-1271.	3.8	26

#	Article	IF	CITATIONS
37	Interconnected polypyrrole nanostructure for high-performance all-solid-state flexible supercapacitor. Electrochimica Acta, 2019, 298, 918-923.	5.2	26
38	A reliable gel polymer electrolyte enables stable cycling of rechargeable aluminum batteries in a wide-temperature range. Journal of Power Sources, 2021, 497, 229839.	7.8	26
39	Single-atom Zn for boosting supercapacitor performance. Nano Research, 2022, 15, 1715-1724.	10.4	26
40	Urchin-like TiO ₂ @C core–shell microspheres: coupled synthesis and lithium-ion battery applications. Physical Chemistry Chemical Physics, 2014, 16, 8808-8811.	2.8	25
41	An advanced zinc air battery with nanostructured superwetting electrodes. Energy Storage Materials, 2019, 17, 358-365.	18.0	25
42	Hierarchically Porous N, P-Codoped Carbon Materials for High-Performance Supercapacitors. ACS Applied Energy Materials, 2020, 3, 10080-10088.	5.1	25
43	High-performance aqueous battery with double hierarchical nanoarrays. Nano Energy, 2014, 10, 229-234.	16.0	24
44	A two-volt aqueous supercapacitor from porous dehalogenated carbon. Journal of Materials Chemistry A, 2017, 5, 6734-6739.	10.3	23
45	Oxygenated P/N co-doped carbon for efficient 2e ^{â^'} oxygen reduction to H ₂ O ₂ . Journal of Materials Chemistry A, 2022, 10, 14355-14363.	10.3	22
46	One‣tep Scalable Production of Co _{1â^'} <i>_x</i> S/Graphene Nanocomposite as Highâ€Performance Bifunctional Electrocatalyst. Particle and Particle Systems Characterization, 2016, 33, 569-575.	2.3	21
47	An alternative pathway to water soluble functionalized graphene from the defluorination of graphite fluoride. Carbon, 2016, 96, 1022-1027.	10.3	21
48	Oxygenated boron-doped carbon via polymer dehalogenation as an electrocatalyst for high-efficiency O2 reduction to H2O2. Science China Materials, 2022, 65, 1276-1284.	6.3	21
49	N-doped carbon nanoflower-supported Fe-N4 motifs for high-efficiency reduction of oxygen in both alkaline and acid. Chemical Engineering Journal, 2021, 424, 130401.	12.7	20
50	Interfacial dehalogenation-enabled hollow N-doped carbon network as bifunctional catalysts for rechargeable Zn-air battery. Electrochimica Acta, 2017, 247, 1044-1051.	5.2	19
51	Room-temperature rapid synthesis of metal-free doped carbon materials. Carbon, 2017, 115, 28-33.	10.3	18
52	Fabricating hierarchically porous carbon with well-defined open pores via polymer dehalogenation for high-performance supercapacitor. Applied Surface Science, 2018, 440, 606-613.	6.1	18
53	One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation. Journal of Materials Research, 2012, 27, 1006-1013.	2.6	17
54	Assisting Atomic Dispersion of Fe in N-Doped Carbon by Aerosil for High-Efficiency Oxygen Reduction. ACS Applied Materials & Interfaces, 2020, 12, 25832-25842.	8.0	17

#	Article	IF	CITATIONS
55	Electrochemical heavy metal removal from water using PVC waste-derived N, S co-doped carbon materials. RSC Advances, 2020, 10, 4064-4070.	3.6	17
56	Understanding the "Tailoring Synthesis―of CdS Nanorods by O ₂ . Inorganic Chemistry, 2012, 51, 1302-1308.	4.0	16
57	Extracting genomic DNA of foodstuff by polyamidoamine (PAMAM)–magnetite nanoparticles. Talanta, 2012, 93, 166-171.	5.5	16
58	V2O5 nanostructure arrays: controllable synthesis and performance as cathodes for lithium ion batteries. RSC Advances, 2013, 3, 19937.	3.6	14
59	Binary FeCo-N-doped carbon/carbon nanotube composites for efficient oxygen reduction and high-performance aluminum-air battery. Journal of Power Sources, 2020, 456, 227933.	7.8	14
60	Sacrificial carbon nitride-templated hollow FeCo-NC material for highly efficient oxygen reduction reaction and Al-air battery. Electrochimica Acta, 2020, 341, 136066.	5.2	14
61	Preparation of Multiâ€Metal Oxide Hollow Sphere Using Layered Double Hydroxide Precursors. Chinese Journal of Chemistry, 2012, 30, 2183-2188.	4.9	13
62	Green sacrificial template fabrication of hierarchical MoO3 nanostructures. CrystEngComm, 2014, 16, 3935.	2.6	13
63	Promoted Oxygen Reduction Activity of Ag/Reduced Graphene Oxide by Incorporated CoOx. Electrochimica Acta, 2014, 132, 136-141.	5.2	13
64	Scalable fabrication of hierarchically porous N-doped carbon electrode materials for high-performance aqueous symmetric supercapacitor. Journal of Materials Science, 2018, 53, 5194-5203.	3.7	12
65	An integrated strategy based on Schiff base reactions to construct unique two-dimensional nanostructures for intrinsic pseudocapacitive sodium/lithium storage. Chemical Engineering Journal, 2022, 429, 132339.	12.7	12
66	Residual metals present in "metal-free―N-doped carbons. Chemical Communications, 2015, 51, 15585-15587.	4.1	11
67	Polyvinylchloride-derived N, S co-doped carbon as an efficient sulfur host for high-performance Li–S batteries. RSC Advances, 2018, 8, 37811-37816.	3.6	10
68	Strongly coupled Fe-doped NiS ₂ /MoS ₂ composite for high-efficiency water splitting. Chemical Communications, 2022, 58, 557-560.	4.1	10
69	Research Progresses and Challenges of Flexible Zinc Battery. Frontiers in Chemistry, 2022, 10, 827563.	3.6	10
70	Detection and Isolation of Dendritic Cells Using Lewis X-Functionalized Magnetic Nanoparticles. Biomacromolecules, 2012, 13, 3039-3045.	5.4	9
71	Converting Polyvinyl Chloride Plastic Wastes to Carbonaceous Materials via Room-Temperature Dehalogenation for High-Performance Supercapacitor. ACS Applied Energy Materials, 0, , .	5.1	9
72	Synthesis of Ultrastable Ag Nanoplates/Polyethylenimine–Reduced Graphene Oxide and Its Application as a Versatile Electrochemical Sensor. Chemistry - A European Journal, 2016, 22, 10923-10929.	3.3	8

#	Article	IF	CITATIONS
73	Topotactic conversion of calcium carbide to highly crystalline few-layer graphene in water. Journal of Materials Chemistry A, 2018, 6, 23638-23643.	10.3	8
74	Thin sandwich graphene oxide@N-doped carbon composites for high-performance supercapacitors. RSC Advances, 2017, 7, 22071-22078.	3.6	6
75	A density functional theory study of the oxygen reduction reaction on the (111) and (100) surfaces of cobalt(II) oxide. Progress in Reaction Kinetics and Mechanism, 2019, 44, 122-131.	2.1	6
76	Molten alkaline synthesis of highly porous carbon from calcium carbide. Microporous and Mesoporous Materials, 2019, 278, 397-402.	4.4	5
77	Enhancing Oxygen Reduction Activity by Exposing (111) Facets of CoFe ₂ O ₄ Octahedron on Graphene. ChemistrySelect, 2017, 2, 9878-9881.	1.5	4
78	Fabricating Sulfur/Oxygen Coâ€Doped Crumpled Graphene for Highâ€Performance Oxygen Reduction Reaction Electrocatalysis. ChemElectroChem, 2018, 5, 242-246.	3.4	4
79	Formamide-derived "glue―for the hundred-gram scale synthesis of atomically dispersed iron–nitrogen–carbon electrocatalysts. Nanoscale, 2021, 13, 17890-17899.	5.6	4
80	Rational Construction of Fluffy CNT on Binary FeCoâ€NC as Highâ€Efficiency S Host for Liâ^'S Battery. ChemElectroChem, 2021, 8, 3239-3242.	3.4	4
81	Dehalogenated carbon-hosted cobalt-nitrogen complexes for high-performance electrochemical reduction of oxygen. Carbon, 2018, 139, 725-731.	10.3	3
82	Formamide-soluble solid-state ZnO as Zn source for synthesizing FeCo–NC with ultrahigh oxygen reduction reaction activity. Materials Chemistry Frontiers, 0, , .	5.9	3
83	Nucleic acid from beans extracted by ethanediamine magnetic particles. Journal of Food Science and Technology, 2015, 52, 1784-1789.	2.8	2
84	A general approach to homogeneous sub-nanometer metallic particle/graphene composites by S-coordinator. Solid State Communications, 2018, 273, 17-22.	1.9	2
85	A 3D Nanoporous Ni-Mo Electrocatalyst with Negligible Overpotential for Alkaline Hydrogen Evolution. ChemElectroChem, 2014, 1, 1089-1089.	3.4	1
86	Toward High-Voltage/Energy Symmetric Supercapacitors via Interface Engineering. , 0, , .		1
87	Hierarchical porous N,S odoped carbon material derived from halogenated polymer for battery applications. Nano Select, 2021, 2, 581-590.	3.7	1
88	Size Control Methods and Size-Dependent Properties of Graphene. , 2016, , 27-40.		0
89	Hierarchically porous carbon from foamed Mg chelate for supercapacitor and capacitive deionization. Ionics, 2020, 26, 4713-4721.	2.4	0