Long You

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/341288/publications.pdf

Version: 2024-02-01

		236925	102487
82	4,427	25	66
papers	citations	h-index	g-index
85	85	85	7102
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Broad-Range Modulation of Light Emission in Two-Dimensional Semiconductors by Molecular Physisorption Gating. Nano Letters, 2013, 13, 2831-2836.	9.1	674
2	Negative capacitance in a ferroelectric capacitor. Nature Materials, 2015, 14, 182-186.	27.5	611
3	Room-temperature antiferromagnetic memory resistor. Nature Materials, 2014, 13, 367-374.	27.5	546
4	Microscopic Origin of the Giant Ferroelectric Polarization in Tetragonal-like <mml:math display="inline" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msub><mml:mi>BiFeO</mml:mi><mml:mn>3</mml:mn></mml:msub></mml:math> . Physical Review Letters, 2011, 107, 147602.	7.8	290
5	Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 10310-10315.	7.1	236
6	Interface control of bulk ferroelectric polarization. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 9710-9715.	7.1	212
7	Reconfigurable Skyrmion Logic Gates. Nano Letters, 2018, 18, 1180-1184.	9.1	201
8	Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nature Nanotechnology, 2014, 9, 59-63.	31.5	193
9	Single crystal functional oxides on silicon. Nature Communications, 2016, 7, 10547.	12.8	156
10	Highly crystalline MoS2 thin films grown by pulsed laser deposition. Applied Physics Letters, 2015, 106,	3.3	117
11	Spin-Dependent Transport in van der Waals Magnetic Tunnel Junctions with Fe ₃ GeTe ₂ Electrodes. Nano Letters, 2019, 19, 5133-5139.	9.1	115
12	Skyrmion devices for memory and logic applications. APL Materials, 2021, 9, .	5.1	89
13	Co/Ni multilayers with perpendicular anisotropy for spintronic device applications. Applied Physics Letters, 2012, 100, .	3.3	73
14	Interface Engineering of Domain Structures in BiFeO ₃ Thin Films. Nano Letters, 2017, 17, 486-493.	9.1	69
15	Deterministic Domain Wall Motion Orthogonal To Current Flow Due To Spin Orbit Torque. Scientific Reports, 2015, 5, 11823.	3.3	64
16	Electrically reversible cracks in an intermetallic film controlled by an electric field. Nature Communications, 2018, 9, 41.	12.8	53
17	Van der Waals Multiferroic Tunnel Junctions. Nano Letters, 2021, 21, 175-181.	9.1	53
18	A Spin–Orbitâ€√orque Memristive Device. Advanced Electronic Materials, 2019, 5, 1800782.	5.1	51

#	Article	IF	CITATIONS
19	Magnetic skyrmions without the skyrmion Hall effect in a magnetic nanotrack with perpendicular anisotropy. Nanoscale, 2017, 9, 10212-10218.	5 . 6	48
20	Nonvolatile MoS2 field effect transistors directly gated by single crystalline epitaxial ferroelectric. Applied Physics Letters, 2017, 111, .	3.3	45
21	Motion of a skyrmionium driven by spin wave. Applied Physics Letters, 2018, 112, .	3.3	36
22	Highly Secure Physically Unclonable Cryptographic Primitives Based on Interfacial Magnetic Anisotropy. Nano Letters, 2018, 18, 7211-7216.	9.1	36
23	Spin-orbit-torque-driven multilevel switching in Ta/CoFeB/MgO structures without initialization. Applied Physics Letters, 2019, 114, .	3.3	31
24	Voltage-Controlled Skyrmion Memristor for Energy-Efficient Synapse Applications. IEEE Electron Device Letters, 2019, 40, 635-638.	3.9	31
25	A spin–orbit torque device for sensing three-dimensional magnetic fields. Nature Electronics, 2021, 4, 179-184.	26.0	28
26	Flexible spin-orbit torque devices. Applied Physics Letters, 2015, 107, .	3.3	26
27	Voltage-controlled skyrmion-based nanodevices for neuromorphic computing using a synthetic antiferromagnet. Nanoscale Advances, 2020, 2, 1309-1317.	4.6	25
28	Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias. Advanced Materials, 2016, 28, 118-123.	21.0	24
29	Skyrmion-based high-frequency signal generator. Applied Physics Letters, 2017, 110, .	3.3	22
30	3D multilevel spin transfer torque devices. Applied Physics Letters, 2018, 112, .	3.3	15
31	Spin–orbit torque-based reconfigurable physically unclonable functions. Applied Physics Letters, 2020, 116, .	3.3	15
32	Binary and Ternary True Random Number Generators Based on Spin Orbit Torque. , 2018, , .		13
33	Power and area efficient stochastic artificial neural networks using spin–orbit torque-based true random number generator. Applied Physics Letters, 2021, 118, .	3.3	13
34	The effects of strain relaxation on the dielectric properties of epitaxial ferroelectric Pb(Zr0.2Ti0.8)TiO3 thin films. Applied Physics Letters, 2014, 105, .	3.3	11
35	Low current writing perpendicular magnetic random access memory with high thermal stability. Materials and Design, 2016, 92, 1046-1051.	7.0	11
36	A Dual Magnetic Tunnel Junctionâ€Based Neuromorphic Device. Advanced Intelligent Systems, 2020, 2, 2000143.	6.1	11

#	Article	IF	CITATIONS
37	Dynamic Heating in Micron- and Submicron-Patterned TbFe Films. Japanese Journal of Applied Physics, 2008, 47, 146-149.	1.5	10
38	Thermomagnetic writing on deep submicron-patterned TbFe films by nanosecond current pulse. Journal of Magnetism and Magnetic Materials, 2009, 321, 1015-1018.	2.3	10
39	Intrinsic Controllable Magnetism of Graphene Grown on Fe. Journal of Physical Chemistry C, 2019, 123, 26870-26876.	3.1	10
40	Novel Cascadable Magnetic Majority Gates for Implementing Comprehensive Logic Functions. IEEE Transactions on Electron Devices, 2018, 65, 4687-4693.	3.0	8
41	Large Magnetoresistance in an Electric-Field-Controlled Antiferromagnetic Tunnel Junction. Physical Review Applied, 2019, 12, .	3.8	8
42	Voltage-controlled magnetic anisotropy in antiferromagnetic L10-MnPt and MnPd thin films. Journal of Magnetism and Magnetic Materials, 2020, 505, 166758.	2.3	8
43	Reconfigurable Physical Unclonable Function Based on Spin-Orbit Torque Induced Chiral Domain Wall Motion. IEEE Electron Device Letters, 2021, 42, 597-600.	3.9	8
44	Effects of Interface Induced Natural Strains on Magnetic Properties of FeRh. Nanomaterials, 2019, 9, 574.	4.1	7
45	Voltage-induced inertial domain wall motion in an antiferromagnetic nanowire. Journal of Magnetism and Magnetic Materials, 2020, 511, 166995.	2.3	7
46	Strain-induced Megahertz Oscillation and Stable Velocity of an Antiferromagnetic Domain Wall. Physical Review Applied, 2021, 15, .	3.8	7
47	Reconfigurable physical unclonable cryptographic primitives based on current-induced nanomagnets switching. Science China Information Sciences, 2022, 65, 1 .	4.3	7
48	Possible route to low current, high speed, dynamic switching in a perpendicular anisotropy CoFeB-MgO junction using Spin Hall Effect of Ta. , 2012, , .		6
49	Nanoelectromechanical Switches by Controlled Switchable Cracking. IEEE Electron Device Letters, 2019, 40, 1209-1212.	3.9	6
50	Voltage-induced high-speed DW motion in a synthetic antiferromagnet. Journal Physics D: Applied Physics, 2019, 52, 495001.	2.8	5
51	Demonstration of spin transfer torque (STT) magnetic recording. Applied Physics Letters, 2019, 114, .	3.3	5
52	Edge effects on Dzyaloshinskii domain wall tilting. Journal of Magnetism and Magnetic Materials, 2019, 485, 69-74.	2.3	5
53	Crack-Based Complementary Nanoelectromechanical Switches for Reconfigurable Computing. IEEE Electron Device Letters, 2020, 41, 784-787.	3.9	5
54	The magnetic properties of sputter-deposited and annealed CoCr/CoCrPt recording media. Materials & Design, 2006, 27, 223-225.	5.1	4

#	Article	IF	CITATIONS
55	Magnetic Force Microscopy Study of Thermomagnetic Writing on Micron- and Submicron-Patterned TbFe Films Using Current Pulses. Japanese Journal of Applied Physics, 2007, 46, 1003-1005.	1.5	4
56	Readable racetrack memory via ferromagnetically coupled chiral domain walls. Applied Physics Letters, $2018,113,.$	3.3	4
57	Memristors: A Spin–Orbitâ€Torque Memristive Device (Adv. Electron. Mater. 4/2019). Advanced Electronic Materials, 2019, 5, 1970022.	5.1	4
58	Skyrmion latch and flip-flop in magnetic nanotracks with gradient anisotropy. Journal of Magnetism and Magnetic Materials, 2020, 494, 165739.	2.3	4
59	Ferroelectricâ€Nanocrack Switches for Memory and Complementary Logic with Zero Offâ€current and Low Operating Voltage. Advanced Electronic Materials, 2021, 7, 2100023.	5.1	4
60	Inâ€Memory Mathematical Operations with Spinâ€Orbit Torque Devices. Advanced Science, 2022, 9, .	11.2	4
61	Magnetoresistance oscillations in topological insulator Bi2Te3 nanoscale antidot arrays. Nanotechnology, 2015, 26, 265301.	2.6	3
62	Self-assembled single-digit nanometer memory cells. Applied Physics Letters, 2018, 113, 062404.	3.3	3
63	Low-energy complementary ferroelectric-nanocrack logic. Nano Energy, 2020, 75, 104871.	16.0	3
64	Thermally Assisted Skyrmion Memory (TA-SKM). IEEE Electron Device Letters, 2020, 41, 932-935.	3.9	3
65	Tunable Random Number Generators Implemented by Spin-Orbit Torque Driven Stochastic Switching of a Nanomagnet for Probabilistic Spin Logic. , 2021, , .		3
66	Current-Induced Magnetic Switching in an L10 FePt Single Layer with Large Perpendicular Anisotropy Through Spin–Orbit Torque. Engineering, 2022, 12, 55-61.	6.7	3
67	Motion of skyrmioniums with negligible deformation in synthetic antiferromagnets. Applied Physics Letters, 2022, 121, .	3.3	3
68	The influence of annealing on the structural and magnetic properties of C/CoCrPt/CrTi trilayer recording media. Journal of Magnetism and Magnetic Materials, 2004, 280, 419-423.	2.3	2
69	Spin Dice Based on Orthogonal Spin-Transfer Devices With Planar Polarizer. IEEE Transactions on Magnetics, 2018, 54, 1-4.	2.1	2
70	A three-dimensional magnetic field sensor based on a single spin–orbit-torque device via domain nucleation. Applied Physics Letters, 2022, 120, .	3.3	2
71	Edge effects on the high-frequency dynamics of Dzyaloshinskii domain walls. Journal of Applied Physics, 2019, 126, 163904.	2.5	1
72	Synthesis and Properties of Monolayer Graphene (MLG)-Covered Fe(111). Chemistry of Materials, 2020, 32, 10463-10468.	6.7	1

#	Article	IF	CITATIONS
73	Integrator based on current-controlled magnetic domain wall. Applied Physics Letters, 2021, 118, 052402.	3.3	1
74	Angle-Dependent Anisotropic Magnetoresistance Under the Competition Between Anisotropic Field and Magnetic Field. IEEE Transactions on Magnetics, 2021, 57, 1-7.	2.1	1
75	Asymmetrical magnetic domain wall motion in symmetrical heavy metal/ferromagnet multilayers. Physical Review B, 2022, 105, .	3.2	1
76	Terahertz bremsstrahlung and frequency comb induced by variable motion of an antiferromagnetic domain wall. Journal Physics D: Applied Physics, 2022, 55, 295302.	2.8	1
77	Effect of Nb content on the microstructure and magnetic properties of CoCrPtNb/CrTi/C thin films. Journal of Alloys and Compounds, 2005, 388, 293-296.	5 . 5	0
78	Ferromagnetism: Epitaxial Growth of Intermetallic MnPt Films on Oxides and Large Exchange Bias (Adv. Mater. 1/2016). Advanced Materials, 2016, 28, 204-204.	21.0	0
79	Spin–Orbit Torque-Driven Magnetic Switching of Co/Pt-CoFeB Exchange Spring Ferromagnets. IEEE Transactions on Magnetics, 2019, 55, 1-4.	2.1	0
80	Shape transformation and self-alignment of Fe-based nanoparticles. Nanoscale Advances, 2019, 1, 2523-2528.	4.6	0
81	One-step fabrication of size-controllable nicotine containing core–shell structures. Nanoscale Advances, 2019, 1, 1305-1313.	4.6	0
82	Controlled nano-cracking actuated by an in-plane voltage. Science China Information Sciences, 2021, 64, 1 .	4.3	0