Wing-Yiu Choy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3412864/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A novel yeast model detects Nrf2 and Keap1 interactions with Hsp90. DMM Disease Models and Mechanisms, 2022, 15, .	2.4	5
2	Oxidative Stress-Induced Misfolding and Inclusion Formation of Nrf2 and Keap1. Antioxidants, 2022, 11, 243.	5.1	2
3	Folding or holding?—Hsp70 and Hsp90 chaperoning of misfolded proteins in neurodegenerative disease. Journal of Biological Chemistry, 2022, 298, 101905.	3.4	39
4	AlphaFold2: A Role for Disordered Protein/Region Prediction?. International Journal of Molecular Sciences, 2022, 23, 4591.	4.1	72
5	Exploring the Conformational Landscape of the Neh4 and Neh5 Domains of Nrf2 Using Two Different Force Fields and Circular Dichroism. Journal of Chemical Theory and Computation, 2021, 17, 3145-3156.	5.3	11
6	KEAP1 Cancer Mutants: A Large-Scale Molecular Dynamics Study of Protein Stability. International Journal of Molecular Sciences, 2021, 22, 5408.	4.1	7
7	Nrf2, the Major Regulator of the Cellular Oxidative Stress Response, is Partially Disordered. International Journal of Molecular Sciences, 2021, 22, 7434.	4.1	19
8	Matrin3: Disorder and ALS Pathogenesis. Frontiers in Molecular Biosciences, 2021, 8, 794646.	3.5	10
9	Modulation of hippocampal neuronal resilience during aging by the Hsp70/Hsp90 coâ€chaperone STI1. Journal of Neurochemistry, 2020, 153, 727-758.	3.9	16
10	Increased levels of Stress-inducible phosphoprotein-1 accelerates amyloid-β deposition in a mouse model of Alzheimer's disease. Acta Neuropathologica Communications, 2020, 8, 143.	5.2	13
11	Prediction of Binding Energy of Keap1 Interaction Motifs in the Nrf2 Antioxidant Pathway and Design of Potential High-Affinity Peptides. Journal of Physical Chemistry B, 2018, 122, 5851-5859.	2.6	17
12	Molecular basis for the interaction between stress-inducible phosphoprotein 1 (STIP1) and S100A1. Biochemical Journal, 2017, 474, 1853-1866.	3.7	6
13	The Hsp70/Hsp90 Chaperone Machinery in Neurodegenerative Diseases. Frontiers in Neuroscience, 2017, 11, 254.	2.8	277
14	Domains of STIP1 responsible for regulating PrPC-dependent amyloid-Î ² oligomer toxicity. Biochemical Journal, 2016, 473, 2119-2130.	3.7	23
15	Conformational characterization of the intrinsically disordered protein Chibby: Interplay between structural elements in target recognition. Protein Science, 2016, 25, 1420-1429.	7.6	6
16	Characterization of the Free State Ensemble of the CoRNR Box Motif by Molecular Dynamics Simulations. Journal of Physical Chemistry B, 2016, 120, 1060-1068.	2.6	12
17	Binding of Disordered Peptides to Kelch: Insights from Enhanced Sampling Simulations. Journal of Chemical Theory and Computation, 2016, 12, 395-404.	5.3	23
18	Molecular effects of cancer-associated somatic mutations on the structural and target recognition properties of Keap1. Biochemical Journal, 2015, 467, 141-151.	3.7	7

WING-YIU CHOY

#	Article	lF	CITATIONS
19	Structural Analysis of the 14-3-3ζ/Chibby Interaction Involved in Wnt/β-Catenin Signaling. PLoS ONE, 2015, 10, e0123934.	2.5	23
20	Accelerating the Conformational Sampling of Intrinsically Disordered Proteins. Journal of Chemical Theory and Computation, 2014, 10, 5081-5094.	5.3	38
21	1H, 15N and 13C backbone resonance assignments of the Kelch domain of mouse Keap1. Biomolecular NMR Assignments, 2013, 7, 149-153.	0.8	2
22	Conformational Biases of Linear Motifs. Journal of Physical Chemistry B, 2013, 117, 15943-15957.	2.6	18
23	Characterization of disordered proteins with ENSEMBLE. Bioinformatics, 2013, 29, 398-399.	4.1	141
24	1H, 15N and 13C backbone resonance assignments of the TPR1 and TPR2A domains of mouse STI1. Biomolecular NMR Assignments, 2013, 7, 305-310.	0.8	5
25	Fuzzy Complex Formation between the Intrinsically Disordered Prothymosin α and the Kelch Domain of Keap1 Involved in the Oxidative Stress Response. Journal of Molecular Biology, 2013, 425, 1011-1027.	4.2	38
26	Solution Structure and Dynamics of Human Hemoglobin in the Carbonmonoxy Form. Biochemistry, 2013, 52, 5809-5820.	2.5	17
27	The Prion Protein Ligand, Stress-Inducible Phosphoprotein 1, Regulates Amyloid-β Oligomer Toxicity. Journal of Neuroscience, 2013, 33, 16552-16564.	3.6	70
28	Binding of disordered proteins to a protein hub. Scientific Reports, 2013, 3, 2305.	3.3	28
29	Expression of a recombinant Phoneutria toxin active in calcium channels. Toxicon, 2012, 60, 907-918.	1.6	3
30	Comparison of Secondary Structure Formation Using 10 Different Force Fields in Microsecond Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2012, 8, 2725-2740.	5.3	171
31	Effects of Molecular Crowding on the Dynamics of Intrinsically Disordered Proteins. PLoS ONE, 2012, 7, e49876.	2.5	85
32	Structural Characterization of Partially Disordered Human Chibby: Insights into Its Function in the Wnt-Signaling Pathway. Biochemistry, 2011, 50, 715-726.	2.5	21
33	Microsecond Molecular Dynamics Simulations of Intrinsically Disordered Proteins Involved in the Oxidative Stress Response. PLoS ONE, 2011, 6, e27371.	2.5	40
34	Solution-Phase Chelators for Suppressing Nonspecific Proteinâ^'Metal Interactions in Electrospray Mass Spectrometry. Analytical Chemistry, 2009, 81, 5008-5015.	6.5	52
35	A new protocol for high-yield purification of recombinant human prothymosin α expressed in Escherichia coli for NMR studies. Protein Expression and Purification, 2008, 57, 1-8.	1.3	15
36	Dynamic equilibrium engagement of a polyvalent ligand with a single-site receptor. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 17772-17777.	7.1	304

WING-YIU CHOY

#	Article	IF	CITATIONS
37	Improved Structural Characterizations of the drkN SH3 Domain Unfolded State Suggest a Compact Ensemble with Native-like and Non-native Structure. Journal of Molecular Biology, 2007, 367, 1494-1510.	4.2	109
38	Effects of Zinc Binding on the Structure and Dynamics of the Intrinsically Disordered Protein Prothymosin α:  Evidence for Metalation as an Entropic Switch. Biochemistry, 2007, 46, 13120-13130.	2.5	54
39	CFTR regulatory region interacts with NBD1 predominantly via multiple transient helices. Nature Structural and Molecular Biology, 2007, 14, 738-745.	8.2	267
40	The intrinsically disordered TCâ€1 interacts with Chibby via regions with high helical propensity. Protein Science, 2007, 16, 2510-2518.	7.6	25
41	The hypothetical protein Atu4866 from Agrobacterium tumefaciens adopts a streptavidin-like fold. Protein Science, 2007, 17, 154-158.	7.6	1
42	Backbone and side chain 1H, 13C, and 15N resonance assignments of AF2241 from Archaeoglobus fulgidus. Journal of Biomolecular NMR, 2007, 38, 183-183.	2.8	1
43	Hypothetical protein AF2241 from Archaeoglobus fulgidus adopts a cyclophilin-like fold. Journal of Biomolecular NMR, 2007, 38, 353-358.	2.8	2
44	15N NMR Spin Relaxation Dispersion Study of the Molecular Crowding Effects on Protein Folding under Native Conditions. Journal of the American Chemical Society, 2006, 128, 3916-3917.	13.7	83
45	Identification of a Collapsed Intermediate with Non-native Long-range Interactions on the Folding Pathway of a Pair of Fyn SH3 Domain Mutants by NMR Relaxation Dispersion Spectroscopy. Journal of Molecular Biology, 2006, 363, 958-976.	4.2	77
46	Solution NMR-derived global fold of a monomeric 82-kDa enzyme. Proceedings of the National Academy of Sciences of the United States of America, 2005, 102, 622-627.	7.1	203
47	An 15N NMR Spin Relaxation Dispersion Study of the Folding of a Pair of Engineered Mutants of Apocytochrome b562. Journal of the American Chemical Society, 2005, 127, 5066-5072.	13.7	30
48	Structural Comparison of the Unstable drkN SH3 Domain and a Stable Mutantâ€,‡. Biochemistry, 2005, 44, 15550-15560.	2.5	39
49	Addressing the overlap problem in the quantitative analysis of two dimensional NMR spectra: Application to 15N relaxation measurements. Journal of Biomolecular NMR, 2004, 30, 347-352.	2.8	14
50	Model selection for the interpretation of protein side chain methyl dynamics. Journal of Biomolecular NMR, 2003, 25, 325-333.	2.8	14
51	Probing Residual Interactions in Unfolded Protein States Using NMR Spin Relaxation Techniques:  An Application to Δ131Δ. Journal of the American Chemical Society, 2003, 125, 11988-11992.	13.7	19
52	Side Chain Dynamics in Unfolded Protein States: an NMR Based2H Spin Relaxation Study of Δ131Δ. Journal of the American Chemical Society, 2003, 125, 1748-1758.	13.7	44
53	Corrigendum to the Paper by Mok et al. (1999) NOE Data Demonstrating a Compact Unfolded State for an SH3 Domain under Non-denaturing Conditions. Journal of Molecular Biology, 2003, 329, 185-187.	4.2	16
54	Solution structure and dynamics of the outer membrane enzyme PagP by NMR. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 13560-13565.	7.1	302

WING-YIU CHOY

#	Article	IF	CITATIONS
55	Distribution of molecular size within an unfolded state ensemble using small-angle X-ray scattering and pulse field gradient NMR techniques. Journal of Molecular Biology, 2002, 316, 101-112.	4.2	181
56	Calculation of ensembles of structures representing the unfolded state of an SH3 domain. Journal of Molecular Biology, 2001, 308, 1011-1032.	4.2	209
57	Structural Characterization of Proteins with an Attached ATCUN Motif by Paramagnetic Relaxation Enhancement NMR Spectroscopy. Journal of the American Chemical Society, 2001, 123, 9843-9847.	13.7	162
58	Direct structure refinement of high molecular weight proteins against residual dipolar couplings and carbonyl chemical shift changes upon alignment: an application to maltose binding protein. Journal of Biomolecular NMR, 2001, 21, 31-40.	2.8	50
59	A method for incorporating dipolar couplings into structure calculations in cases of (near) axial symmetry of alignment. Journal of Biomolecular NMR, 2000, 18, 183-188.	2.8	15
60	Orienting domains in proteins using dipolar couplings measured by liquid-state NMR: differences in solution and crystal forms of maltodextrin binding protein loaded with β-cyclodextrin. Journal of Molecular Biology, 2000, 295, 1265-1273.	4.2	197
61	Global folds of proteins with low densities of NOEs using residual dipolar couplings: application to the 370-residue maltodextrin-binding protein. Journal of Molecular Biology, 2000, 300, 197-212.	4.2	165
62	Title is missing!. Journal of Biomolecular NMR, 1999, 14, 333-343.	2.8	122
63	Quantitative determination of glucose in blood plasma by homonuclear proton decoupled water attenuation transverse relaxation Carr-Purcell-Meiboom-Gill (WATR-HDCPMG) NMR spectroscopy. Fresenius' Journal of Analytical Chemistry, 1998, 361, 500-503.	1.5	0
64	Using Genetic Algorithms with a Priori Knowledge for Quantitative NMR Signal Analysis. Journal of Chemical Information and Computer Sciences, 1998, 38, 685-690.	2.8	15
65	Using Neural Network Predicted Secondary Structure Information in Automatic Protein NMR Assignment. Journal of Chemical Information and Computer Sciences, 1997, 37, 1086-1094.	2.8	21
66	Solvent-Dependent 59Co NMR-Study of [Co(en)3]Cl3 and cis,trans-[Co-(en)2(N3)2]NO3. Journal of Magnetic Resonance Series A, 1994, 108, 196-200.	1.6	8
67	Quantitative determination of glucose in blood plasma and in fruit juices by combined WATR-CPMG 1H NMR spectroscopy. Analytical Chemistry, 1992, 64, 2570-2574.	6.5	8