
Shenglong Liao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3409702/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Second Near-Infrared Photothermal Therapy with Superior Penetrability through Skin Tissues. CCS Chemistry, 2022, 4, 3002-3013.	7.8	23
2	An "OFF-to-ON―shape memory polymer conductor for early fire disaster alarming. Chemical Engineering Journal, 2022, 431, 133285.	12.7	18
3	Artificial Kidney Capsule Packed with Mesenchymal Stem Cell-Laden Hydrogel for the Treatment of Rhabdomyolysis-Induced Acute Kidney Injury. ACS Biomaterials Science and Engineering, 2022, 8, 1726-1734.	5.2	9
4	Controllable Degradation of Polyurethane Thermosets with Silaketal Linkages in Response to Weak Acid. ACS Macro Letters, 2022, 11, 868-874.	4.8	10
5	Photothermal Polymers in Near Infrared Window. Chinese Journal of Chemistry, 2021, 39, 1435-1442.	4.9	10
6	Renatured hydrogel painting. Science Advances, 2021, 7, .	10.3	41
7	An Ultraâ€Lowâ€Temperature Elastomer with Excellent Mechanical Performance and Solvent Resistance. Advanced Materials, 2021, 33, e2102096.	21.0	42
8	Self-healing Ionic Liquid-based Electronics and Beyond. Chinese Journal of Polymer Science (English) Tj ETQq0 0 0	rgBT /Ove	rlock 10 Tf 5
9	An injectable bioink with rapid prototyping in the air and in-situ mild polymerization for 3D bioprinting. Biofabrication, 2021, 13, 045026.	7.1	22

10	An Intrinsically Conductive Elastomer for Thromboembolism Diagnosis. Advanced Materials Technologies, 2021, 6, 2001076.	5.8	4
11	<scp>Polymerâ€assisted</scp> fully recyclable flexible sensors. EcoMat, 2021, 3, e12083.	11.9	32
12	Self-Stabilizing Encapsulation through Fast Interfacial Polymerization of Ethyl α-Cyanoacrylate: From Emulsions to Microcapsule Dispersions. Macromolecules, 2021, 54, 10279-10288.	4.8	10
13	Effect of pH or Metal Ions on the Oil/Water Interfacial Behavior of Humic Acid Based Surfactant. Langmuir, 2020, 36, 10838-10845.	3.5	9
14	Three Birds with One Stone: Injectable CaC ₂ Nanobombs with Triple Effects for Minimally Invasive Tumor Chemical Ablation. ACS Applied Bio Materials, 2020, 3, 3809-3816.	4.6	2
15	Interfacial Diffusion Printing: An Efficient Manufacturing Technique for Artificial Tubular Grafts. ACS Biomaterials Science and Engineering, 2019, 5, 6311-6318.	5.2	39
16	Inherently magnetic hydrogel for data storage based on the magneto-optical Kerr effect. Soft Matter, 2019, 15, 393-398.	2.7	13
17	Solvent-resistant and fully recyclable perfluoropolyether-based elastomer for microfluidic chip fabrication. Journal of Materials Chemistry A, 2019, 7, 16249-16256.	10.3	30
18	A Polypyrrole Elastomer Based on Confined Polymerization in a Host Polymer Network for Highly Stretchable Temperature and Strain Sensors. Small, 2018, 14, e1800394.	10.0	60

2

Shenglong Liao

#	Article	IF	CITATIONS
19	Supramolecular Polymer Emulsifiers for One-step Complex Emulsions. Chinese Journal of Polymer Science (English Edition), 2018, 36, 288-296.	3.8	8
20	Intrinsically recyclable and self-healable conductive supramolecular polymers for customizable electronic sensors. Journal of Materials Chemistry C, 2018, 6, 12992-12999.	5.5	29
21	Interfacial Emulsification: An Emerging Monodisperse Droplet Generation Method for Microreactors and Bioanalysis. Langmuir, 2018, 34, 11655-11666.	3.5	22
22	Body Compatible Thermometer Based on Green Electrolytes. ACS Sensors, 2018, 3, 1338-1346.	7.8	15
23	Spider-Inspired Multicomponent 3D Printing Technique for Next-Generation Complex Biofabrication. ACS Applied Bio Materials, 2018, 1, 502-510.	4.6	14
24	Ultrafast Paper Thermometers Based on a Green Sensing Ink. ACS Sensors, 2017, 2, 449-454.	7.8	37
25	A Reversed Photosynthesisâ€like Process for Lightâ€Triggered CO ₂ Capture, Release, and Conversion. ChemSusChem, 2017, 10, 2573-2577.	6.8	15
26	Light-Triggered CO ₂ Breathing Foam via Nonsurfactant High Internal Phase Emulsion. ACS Applied Materials & Interfaces, 2017, 9, 34497-34505.	8.0	22
27	Multichannel Dynamic Interfacial Printing: An Alternative Multicomponent Droplet Generation Technique for Lab in a Drop. ACS Applied Materials & Interfaces, 2017, 9, 43545-43552.	8.0	25
28	Control of Polymer Phase Separation by Roughness Transfer Printing for 2D Microlens Arrays. Small, 2016, 12, 3788-3793.	10.0	9
29	A Lightâ€Activated Microheater for the Remote Control of Enzymatic Catalysis. Chemistry - A European Journal, 2016, 22, 1152-1158.	3.3	28
30	Coiled Fiberâ€Shaped Stretchable Thermal Sensors for Wearable Electronics. Advanced Materials Technologies, 2016, 1, 1600170.	5.8	48
31	Dynamic Interfacial Printing for Monodisperse Droplets and Polymeric Microparticles. Advanced Materials Technologies, 2016, 1, 1600021.	5.8	20
32	Polymer Swelling Induced Conductive Wrinkles for an Ultrasensitive Pressure Sensor. ACS Macro Letters, 2016, 5, 823-827.	4.8	81
33	A Selfâ€Healing Electronic Sensor Based on Thermalâ€Sensitive Fluids. Advanced Materials, 2015, 27, 4622-4627.	21.0	163