Wayne T Mccormack

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3409519/publications.pdf

Version: 2024-02-01

304743 395702 34 2,228 22 33 citations h-index g-index papers 37 37 37 3231 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Clinical and translational science award T32/TL1 training programs: program goals and mentorship practices. Journal of Clinical and Translational Science, 2022, 6, e13.	0.6	9
2	Individual and team competencies in translational teams. Journal of Clinical and Translational Science, 2021, 5, e72.	0.6	24
3	Strategic Team Science: Scaffolded Training for Research Self-Efficacy, Interdisciplinarity, Diversity, Equity, and Inclusive Excellence in Biomedical Research. Journal of Clinical and Translational Science, 2021, 5, 1-9.	0.6	4
4	CTS Teams: A New Model for Translational Team Training and Team Science Intervention. Journal of Clinical and Translational Science, 2021, 5, 1-25.	0.6	8
5	Immediate impact of the COVID-19 pandemic on CTSA TL1 and KL2 training and career development. Journal of Clinical and Translational Science, 2020, 4, 556-561.	0.6	17
6	Training methods that improve MD–PhD student self-efficacy for clinical research skills. Journal of Clinical and Translational Science, 2019, 3, 316-324.	0.6	6
7	Competency-based assessment for the training of PhD students and early-career scientists. ELife, 2018, 7, .	6.0	32
8	Using team-based learning in a large interprofessional health science education experience. Journal of Interprofessional Education and Practice, 2016, 5, 19-22.	0.4	17
9	Genome-wide association studies of autoimmune vitiligo identify 23 new risk loci and highlight key pathways and regulatory variants. Nature Genetics, 2016, 48, 1418-1424.	21.4	225
10	TBL Oversight for Continuous Quality Improvement and Acceptance. Medical Science Educator, 2014, 24, 215-217.	1.5	0
11	Team-Based Learning Instruction for Responsible Conduct of Research Positively Impacts Ethical Decision-Making. Accountability in Research, 2014, 21, 34-49.	2.4	24
12	Approaches to Preparing Young Scholars for Careers in Interdisciplinary Team Science. Journal of Investigative Medicine, 2014, 62, 14-25.	1.6	45
13	Clinical and Translational Scientist Career Success: Metrics for Evaluation. Clinical and Translational Science, 2012, 5, 400-407.	3.1	40
14	Genome-wide association analyses identify 13 new susceptibility loci for generalized vitiligo. Nature Genetics, 2012, 44, 676-680.	21.4	293
15	Comprehensive Association Analysis of Candidate Genes for Generalized Vitiligo Supports XBP1, FOXP3, and TSLP. Journal of Investigative Dermatology, 2011, 131, 371-381.	0.7	106
16	Genome-Wide Analysis Identifies a Quantitative Trait Locus in the MHC Class II Region Associated with Generalized Vitiligo Age of Onset. Journal of Investigative Dermatology, 2011, 131, 1308-1312.	0.7	62
17	Common variants in FOXP1 are associated with generalized vitiligo. Nature Genetics, 2010, 42, 576-578.	21.4	95
18	Variant of <i>TYR </i> and Autoimmunity Susceptibility Loci in Generalized Vitiligo. New England Journal of Medicine, 2010, 362, 1686-1697.	27.0	352

#	Article	IF	CITATIONS
19	Peer Nomination: A Tool for Identifying Medical Student Exemplars in Clinical Competence and Caring, Evaluated at Three Medical Schools. Academic Medicine, 2007, 82, 1033-1039.	1.6	39
20	Genes of the LMP/TAP cluster are associated with the human autoimmune disease vitiligo. Genes and Immunity, 2003, 4, 492-499.	4.1	56
21	Genetic Association of the <i>Catalase</i> Gene (<i>CAT</i>) with Vitiligo Susceptibility. Pigment Cell & Melanoma Research, 2002, 15, 62-66.	3.6	157
22	cDNA Array Analysis Identifies Thymic LCK as Upregulated in Moderate Murine Zinc Deficiency before T-Lymphocyte Population Changes. Journal of Nutrition, 2001, 131, 3189-3196.	2.9	56
23	T-Cell Receptor $\hat{Vl^2}$ Repertoire CDR3 Length Diversity Differs within CD45RA and CD45RO T-Cell Subsets in Healthy and Human Immunodeficiency Virus-Infected Children. Vaccine Journal, 2000, 7, 953-959.	2.6	32
24	PURIFIED DONOR T CELLS ALONE ACTIVATE TRANSPLANTATION IMMUNITY TO THE MALE ANTIGEN BUT INDUCE TOLERANCE IN COMBINATION WITH MAC-1+ DONOR CELLS1. Transplantation, 1999, 68, 1024-1029.	1.0	3
25	Determination of Primary Amino Acid Sequence and Unique Three-Dimensional Structure of WGH1, a Monoclonal Human IgM Antibody with Anti-PR3 Specificity. Clinical Immunology and Immunopathology, 1998, 89, 35-43.	2.0	6
26	Recombination activating genes-1 and -2 of the rabbit: Cloning and characterization of germline and expressed genes. Molecular Immunology, 1993, 30, 1021-1032.	2.2	26
27	Differential regulation of V(D)J recombination during development of avian B and T cells. International Immunology, 1993, 5, 919-927.	4.0	27
28	Immunoglobulin Gene Diversification by Gene Conversion. Progress in Molecular Biology and Translational Science, 1993, 45, 27-45.	1.9	39
29	Selective expression of RAG-2 in chicken B cells undergoing immunoglobulin gene conversion. Cell, 1991, 64, 201-208.	28.9	134
30	Somatic Diversification of the Chicken. Advances in Immunology, 1990, 48, 41-67.	2.2	39
31	Evolutionary comparison of the avian IgL locus: combinatorial diversity plays a role in the generation of the antibody repertoire in some avian species. International Immunology, 1989, 1, 332-341.	4.0	66
32	Chicken IgL gene rearrangement involves deletion of a circular episome and addition of single nonrandom nucleotides to both coding segments. Cell, 1989, 56, 785-791.	28.9	160
33	Dynamic gene interactions in the evolution of rabbit VHgenes: a four codon duplication and block homologies provide evidence for intergenic exchange. Nucleic Acids Research, 1985, 13, 7041-7054.	14.5	24
34	Monoclonal Antibodies Specific for the b5 Allotype of Rabbit Kappa Light Chains. Hybridoma, 1983, 2, 97-107.	0.6	3