
Paul A Beavis

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3408608/publications.pdf

Version: 2024-02-01

DALLI A REAVIS

#	Article	IF	CITATIONS
1	Single-cell profiling of breast cancer T cells reveals a tissue-resident memory subset associated with improved prognosis. Nature Medicine, 2018, 24, 986-993.	30.7	689
2	CMTM6 maintains the expression of PD-L1 and regulates anti-tumour immunity. Nature, 2017, 549, 101-105.	27.8	624
3	Anti-PD-1 Antibody Therapy Potently Enhances the Eradication of Established Tumors By Gene-Modified T Cells. Clinical Cancer Research, 2013, 19, 5636-5646.	7.0	598
4	RAS/MAPK Activation Is Associated with Reduced Tumor-Infiltrating Lymphocytes in Triple-Negative Breast Cancer: Therapeutic Cooperation Between MEK and PD-1/PD-L1 Immune Checkpoint Inhibitors. Clinical Cancer Research, 2016, 22, 1499-1509.	7.0	428
5	CD73 promotes anthracycline resistance and poor prognosis in triple negative breast cancer. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 11091-11096.	7.1	406
6	An Evolutionarily Conserved Function of Polycomb Silences the MHC Class I Antigen Presentation Pathway and Enables Immune Evasion in Cancer. Cancer Cell, 2019, 36, 385-401.e8.	16.8	359
7	Macrophage-Derived CXCL9 and CXCL10 Are Required for Antitumor Immune Responses Following Immune Checkpoint Blockade. Clinical Cancer Research, 2020, 26, 487-504.	7.0	355
8	CD73: a potent suppressor of antitumor immune responses. Trends in Immunology, 2012, 33, 231-237.	6.8	310
9	Blockade of A _{2A} receptors potently suppresses the metastasis of CD73 ⁺ tumors. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 14711-14716.	7.1	306
10	Targeting the epigenetic regulation of antitumour immunity. Nature Reviews Drug Discovery, 2020, 19, 776-800.	46.4	264
11	Adenosine Receptor 2A Blockade Increases the Efficacy of Anti–PD-1 through Enhanced Antitumor T-cell Responses. Cancer Immunology Research, 2015, 3, 506-517.	3.4	262
12	Targeting the adenosine 2A receptor enhances chimeric antigen receptor T cell efficacy. Journal of Clinical Investigation, 2017, 127, 929-941.	8.2	251
13	BET-Bromodomain Inhibitors Engage the Host Immune System and Regulate Expression of the Immune Checkpoint Ligand PD-L1. Cell Reports, 2017, 18, 2162-2174.	6.4	244
14	Tumor immune evasion arises through loss of TNF sensitivity. Science Immunology, 2018, 3, .	11.9	244
15	Chimeric antigen receptor T cells form nonclassical and potent immune synapses driving rapid cytotoxicity. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, E2068-E2076.	7.1	224
16	Immunosuppressive activities of adenosine in cancer. Current Opinion in Pharmacology, 2016, 29, 7-16.	3.5	216
17	Intratumoral Copper Modulates PD-L1 Expression and Influences Tumor Immune Evasion. Cancer Research, 2020, 80, 4129-4144.	0.9	179
18	CD73-Deficient Mice Are Resistant to Carcinogenesis. Cancer Research, 2012, 72, 2190-2196.	0.9	178

PAUL A BEAVIS

#	Article	IF	CITATIONS
19	Relevance of tumor-infiltrating lymphocytes in breast cancer. BMC Medicine, 2015, 13, 202.	5.5	177
20	Tissue-resident memory T cells in breast cancer control and immunotherapy responses. Nature Reviews Clinical Oncology, 2020, 17, 341-348.	27.6	159
21	Sex-specific adipose tissue imprinting of regulatory T cells. Nature, 2020, 579, 581-585.	27.8	141
22	Targeting Adenosine Receptor Signaling in Cancer Immunotherapy. International Journal of Molecular Sciences, 2018, 19, 3837.	4.1	139
23	Adoptive cellular therapy with T cells expressing the dendritic cell growth factor Flt3L drives epitope spreading and antitumor immunity. Nature Immunology, 2020, 21, 914-926.	14.5	114
24	Supercharging adoptive T cell therapy to overcome solid tumor–induced immunosuppression. Science Translational Medicine, 2019, 11, .	12.4	100
25	CRISPR/Cas9 mediated deletion of the adenosine A2A receptor enhances CAR T cell efficacy. Nature Communications, 2021, 12, 3236.	12.8	99
26	Dual-specific Chimeric Antigen Receptor T Cells and an Indirect Vaccine Eradicate a Variety of Large Solid Tumors in an Immunocompetent, Self-antigen Setting. Clinical Cancer Research, 2017, 23, 2478-2490.	7.0	95
27	Agonist immunotherapy restores T cell function following MEK inhibition improving efficacy in breast cancer. Nature Communications, 2017, 8, 606.	12.8	89
28	Cellular networks controlling T cell persistence in adoptive cell therapy. Nature Reviews Immunology, 2021, 21, 769-784.	22.7	83
29	<scp>PTPN</scp> 2 phosphatase deletion in T cells promotes antiâ€tumour immunity and <scp>CAR</scp> Tâ€cell efficacy in solid tumours. EMBO Journal, 2020, 39, e103637.	7.8	79
30	CD3 ^{bright} signals on γδT cells identify ILâ€17Aâ€producing Vγ6Vδ1 ⁺ T cells. Immunology and Cell Biology, 2015, 93, 198-212.	2.3	68
31	Antagonism of IAPs Enhances CAR T-cell Efficacy. Cancer Immunology Research, 2019, 7, 183-192.	3.4	68
32	Dual PD-1 and CTLA-4 Checkpoint Blockade Promotes Antitumor Immune Responses through CD4+Foxp3âr' Cell–Mediated Modulation of CD103+ Dendritic Cells. Cancer Immunology Research, 2018, 6, 1069-1081.	3.4	67
33	CDK4/6 Inhibition Promotes Antitumor Immunity through the Induction of T-cell Memory. Cancer Discovery, 2021, 11, 2582-2601.	9.4	62
34	A Multifunctional Role for Adjuvant Anti-4-1BB Therapy in Augmenting Antitumor Response by Chimeric Antigen Receptor T Cells. Cancer Research, 2017, 77, 1296-1309.	0.9	61
35	Reprogramming the tumor microenvironment to enhance adoptive cellular therapy. Seminars in Immunology, 2016, 28, 64-72.	5.6	52
36	PTP1B Is an Intracellular Checkpoint that Limits T-cell and CAR T-cell Antitumor Immunity. Cancer Discovery, 2022, 12, 752-773.	9.4	52

PAUL A BEAVIS

#	Article	IF	CITATIONS
37	IL-15 Preconditioning Augments CAR T Cell Responses to Checkpoint Blockade for Improved Treatment of Solid Tumors. Molecular Therapy, 2020, 28, 2379-2393.	8.2	49
38	Resistance to regulatory T cell-mediated suppression in rheumatoid arthritis can be bypassed by ectopic foxp3 expression in pathogenic synovial T cells. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 16717-16722.	7.1	48
39	MAIT cells regulate NK cell-mediated tumor immunity. Nature Communications, 2021, 12, 4746.	12.8	45
40	Efficient CRISPR/Cas9 Gene Editing in Uncultured Naive Mouse T Cells for In Vivo Studies. Journal of Immunology, 2020, 204, 2308-2315.	0.8	40
41	The role of exhaustion in CAR T cell therapy. Cancer Cell, 2021, 39, 885-888.	16.8	35
42	CD73: A potential biomarker for anti-PD-1 therapy. Oncolmmunology, 2015, 4, e1046675.	4.6	33
43	Activation of p38 mitogen-activated protein kinase is critical step for acquisition of effector function in cytokine-activated T cells, but acts as a negative regulator in T cells activated through the T-cell receptor. Immunology, 2011, 132, 104-110.	4.4	24
44	Tissueâ€specific tumor microenvironments influence responses to immunotherapies. Clinical and Translational Immunology, 2019, 8, e1094.	3.8	20
45	Enhancing the efficacy of adoptive cellular therapy by targeting tumor-induced immunosuppression. Immunotherapy, 2015, 7, 499-512.	2.0	18
46	A _{2A} blockade enhances anti-metastatic immune responses. Oncolmmunology, 2013, 2, e26705.	4.6	17
47	Switching on the green light for chimeric antigen receptor Tâ€cell therapy. Clinical and Translational Immunology, 2019, 8, e1046.	3.8	11
48	TGFβ and CIS Inhibition Overcomes NK-cell Suppression to Restore Antitumor Immunity. Cancer Immunology Research, 2022, 10, 1047-1054.	3.4	11
49	Promising Immuno-Oncology Options for the Future: Cellular Therapies and Personalized Cancer Vaccines. American Society of Clinical Oncology Educational Book / ASCO American Society of Clinical Oncology Meeting, 2020, 40, e253-e258.	3.8	8
50	Myeloma natural killer cells are exhausted and have impaired regulation of activation. Haematologica, 2021, 106, 2522-2526.	3.5	8
51	Cross-talk between tumors can affect responses to therapy. Oncolmmunology, 2015, 4, e975572.	4.6	7
52	Tumorâ€derived exosomes modulate T cell function through transfer of RNA. FEBS Journal, 2018, 285, 1030-1032.	4.7	6
53	Pharmacological and genetic strategies for targeting adenosine to enhance adoptive T cell therapy of cancer. Current Opinion in Pharmacology, 2020, 53, 91-97.	3.5	5
54	Adoptive transfer of tumor-specific Th9 cells eradicates heterogeneous antigen-expressing tumor cells. Cancer Cell, 2021, 39, 1564-1566.	16.8	5

PAUL A BEAVIS

#	Article	lF	CITATIONS
55	Augmenting Adoptive T-cell Immunotherapy by Targeting the PD-1/PD-L1 Axis. Cancer Research, 2021, 81, 5803-5805.	0.9	4
56	A novel combination strategy for effectively targeting cancer stemâ€like cells. Immunology and Cell Biology, 2017, 95, 573-574.	2.3	3
57	p38 Kinase: A Key Target for Driving Potent T Cells for Adoptive Immunotherapy. Cancer Cell, 2020, 37, 756-758.	16.8	3
58	CD4 ⁺ chimeric antigen receptor T cells in for the long journey. Immunology and Cell Biology, 2022, 100, 304-307.	2.3	3
59	A Novel Target Antigen for the Treatment of Acute Myeloid Leukemia by CAR T Cells. Molecular Therapy, 2017, 25, 1997-1998.	8.2	2
60	T cell inhibitory mechanisms in a model of aggressive Non-Hodgkin's Lymphoma. OncoImmunology, 2018, 7, e1365997.	4.6	2
61	Differential location of NKT and MAIT cells within lymphoid tissue. Scientific Reports, 2022, 12, 4034.	3.3	2
62	CAR T cells take centre stage. Clinical and Translational Immunology, 2019, 8, e01068.	3.8	1
63	Editorial overview: Cancer 2020 current mechanistic insights into the hypoxia-adenosine-A2A adenosinergic immunosuppressive axis in cancer immunotherapies. Current Opinion in Pharmacology, 2020, 53, iii-v.	3.5	1
64	Challenges of Creating New Tumor-Infiltrating Lymphocyte for Combating Breast Cancer. Journal of Clinical Oncology, 2022, , JCO2200284.	1.6	1
65	A New Safety Approach Allowing Reversible Control of CAR T Cell Responses. Molecular Therapy, 2020, 28, 1563-1566.	8.2	Ο