Rodney Gomes

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340860/publications.pdf Version: 2024-02-01

RODNEY COMES

#	Article	IF	CITATIONS
1	Origin of the cataclysmic Late Heavy Bombardment period of the terrestrial planets. Nature, 2005, 435, 466-469.	27.8	1,444
2	Origin of the orbital architecture of the giant planets of the Solar System. Nature, 2005, 435, 459-461.	27.8	1,186
3	Chaotic capture of Jupiter's Trojan asteroids in the early Solar System. Nature, 2005, 435, 462-465.	27.8	743
4	Origin of the structure of the Kuiper belt during a dynamical instability in the orbits of Uranus and Neptune. Icarus, 2008, 196, 258-273.	2.5	385
5	Dynamics of the Giant Planets of the Solar System in the Gaseous Protoplanetary Disk and Their Relationship to the Current Orbital Architecture. Astronomical Journal, 2007, 134, 1790-1798.	4.7	268
6	The origin of the Kuiper Belt high–inclination population. Icarus, 2003, 161, 404-418.	2.5	251
7	LATE ORBITAL INSTABILITIES IN THE OUTER PLANETS INDUCED BY INTERACTION WITH A SELF-GRAVITATING PLANETESIMAL DISK. Astronomical Journal, 2011, 142, 152.	4.7	204
8	Planetary migration in a planetesimal disk: why did Neptune stop at 30 AU?. Icarus, 2004, 170, 492-507.	2.5	197
9	EVIDENCE FROM THE ASTEROID BELT FOR A VIOLENT PAST EVOLUTION OF JUPITER'S ORBIT. Astronomical Journal, 2010, 140, 1391-1401.	4.7	192
10	Constructing the secular architecture of the solar system II: the terrestrial planets. Astronomy and Astrophysics, 2009, 507, 1053-1065.	5.1	123
11	Constructing the secular architecture of the solar system. Astronomy and Astrophysics, 2009, 507, 1041-1052.	5.1	87
12	Explaining why the uranian satellites have equatorial prograde orbits despite the large planetary obliquity. Icarus, 2012, 219, 737-740.	2.5	86
13	Constraining the Giant Planets' Initial Configuration from Their Evolution: Implications for the Timing of the Planetary Instability. Astronomical Journal, 2017, 153, 153.	4.7	84
14	An Oort cloud origin for the high-inclination, high-perihelion Centaurs. Monthly Notices of the Royal Astronomical Society, 2012, 420, 3396-3402.	4.4	80
15	A distant planetary-mass solar companion may have produced distant detached objects. Icarus, 2006, 184, 589-601.	2.5	79
16	Dynamical evidence for an early giant planet instability. Icarus, 2020, 339, 113605.	2.5	60
17	THE INCLINATION OF THE PLANETARY SYSTEM RELATIVE TO THE SOLAR EQUATOR MAY BE EXPLAINED BY THE PRESENCE OF PLANET 9. Astronomical Journal, 2017, 153, 27.	4.7	58
18	The origin of TNO 2004 XR190 as a primordial scattered object. Icarus, 2011, 215, 661-668.	2.5	51

RODNEY GOMES

#	Article	IF	CITATIONS
19	Dynamical Effects of Planetary Migration on Primordial Trojan-Type Asteroids. Astronomical Journal, 1998, 116, 2590-2597.	4.7	46
20	The observation of large semi-major axis Centaurs: Testing for the signature of a planetary-mass solar companion. Icarus, 2015, 258, 37-49.	2.5	44
21	ls the Grand Tack model compatible with the orbital distribution of main belt asteroids?. Icarus, 2016, 272, 114-124.	2.5	43
22	Excitation of a Primordial Cold Asteroid Belt as an Outcome of Planetary Instability. Astrophysical Journal, 2018, 864, 50.	4.5	39
23	Dynamical Effects of Planetary Migration on the Primordial Asteroid Belt. Astronomical Journal, 1997, 114, 396.	4.7	39
24	Reassessing the origin of Triton. Icarus, 2011, 214, 113-130.	2.5	33
25	The Effect of Nonconservative Forces on Resonance Lock: Stability and Instability. Icarus, 1995, 115, 47-59.	2.5	31
26	On the problem of the search for Planet X based on its perturbation on the outer planets. Icarus, 1989, 80, 334-343.	2.5	28
27	Checking the compatibility of the cold Kuiper belt with a planetary instability migration model. Icarus, 2018, 306, 319-327.	2.5	28
28	Dark Energy Survey Year-1 results: galaxy mock catalogues for BAO. Monthly Notices of the Royal Astronomical Society, 2018, 479, 94-110.	4.4	25
29	Modelling the IRAS solar system dust bands. Advances in Space Research, 1990, 10, 171-180.	2.6	23
30	Orbital Evolution in Resonance Lock.I.The Restricted 3-Body Problem. Astronomical Journal, 1997, 114, 2166.	4.7	22
31	On the stability of the satellites of asteroid 87 Sylvia. Monthly Notices of the Royal Astronomical Society, 2009, 395, 218-227.	4.4	19
32	Neptune trojan formation during planetary instability and migration. Astronomy and Astrophysics, 2016, 592, A146.	5.1	15
33	Resonance trapping and evolution of particles subject to poynting-robertson drag: Adiabatic and non-adiabatic approaches. Celestial Mechanics and Dynamical Astronomy, 1995, 61, 97-113.	1.4	14
34	The Common Origin of the High Inclination TNO's. Earth, Moon and Planets, 2003, 92, 29-42.	0.6	12
35	DYNAMICAL IMPLANTATION OF OBJECTS IN THE KUIPER BELT. Astronomical Journal, 2014, 148, 56.	4.7	12

36 Conveyed to the Kuiper belt. Nature, 2003, 426, 393-395.

27.8 9

Rodney Gomes

#	Article	IF	CITATIONS
37	Astrometry and Occultation Predictions to Trans-Neptunian and Centaur Objects Observed within the Dark Energy Survey. Astronomical Journal, 2019, 157, 120.	4.7	8
38	The formation of the cold classical Kuiper Belt by a short range transport mechanism. Icarus, 2021, 357, 114121.	2.5	7
39	Dynamical effects on the classical Kuiper belt during the excited-Neptune model. Icarus, 2019, 334, 89-98.	2.5	6
40	Dynamical origin of the Dwarf Planet Ceres. Icarus, 2022, 379, 114933.	2.5	6
41	The Influence of Planet Nine on the Orbits of Distant TNOs: The Case for a Low-perihelion Planet. Astronomical Journal, 2018, 156, 157.	4.7	5
42	Galaxy clustering in harmonic space from the dark energy survey year 1 data: compatibility with real-space results. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5714-5724.	4.4	5
43	Orbital Evolution in Resonance Lock. II. Two Mutually Perturbing Bodies. Astronomical Journal, 1998, 116, 997-1005.	4.7	4
44	PLANETARY SCIENCE:On the Edge of the Solar System. Science, 1999, 286, 1487-1488.	12.6	3
45	Kuiper belt dynamics. Scholarpedia Journal, 2012, 7, 11034.	0.3	1