
Stephen Safe

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3408272/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nuclear receptor 4A1 (NR4A1) antagonists target paraspeckle component 1 (PSPC1) in cancer cells. Molecular Carcinogenesis, 2022, 61, 73-84.	2.7	5
2	Single-cell RNA Sequencing Reveals How the Aryl Hydrocarbon Receptor Shapes Cellular Differentiation Potency in the Mouse Colon. Cancer Prevention Research, 2022, 15, 17-28.	1.5	6
3	3,3′-Diindolylmethane and 1,4-dihydroxy-2-naphthoic acid prevent chronic mild stress induced depressive-like behaviors in female mice. Journal of Affective Disorders, 2022, 309, 201-210.	4.1	5
4	Plant Alkaloid Tetrandrine Is a Nuclear Receptor 4A1 Antagonist and Inhibits Panc-1 Cell Growth In Vitro and In Vivo. International Journal of Molecular Sciences, 2022, 23, 5280.	4.1	6
5	Excited about Receptors. , 2022, 1, 1-2.		0
6	Resveratrol Binds Nuclear Receptor 4A1 (NR4A1) and Acts as an NR4A1 Antagonist in Lung Cancer Cells. Molecular Pharmacology, 2022, 102, 80-91.	2.3	6
7	The Histone Methyltransferase Gene G9A Is Regulated by Nuclear Receptor 4A1 in Alveolar Rhabdomyosarcoma Cells. Molecular Cancer Therapeutics, 2021, 20, 612-622.	4.1	7
8	Hydroxylated Chalcones as Aryl Hydrocarbon Receptor Agonists: Structure-Activity Effects. Toxicological Sciences, 2021, 180, 148-159.	3.1	2
9	The Paradoxical Roles of Orphan Nuclear Receptor 4A (NR4A) in Cancer. Molecular Cancer Research, 2021, 19, 180-191.	3.4	52
10	Citrus limonoids induce apoptosis and inhibit the proliferation of pancreatic cancer cells. Food and Function, 2021, 12, 1111-1120.	4.6	11
11	Flavonoids: structure–function and mechanisms of action and opportunities for drug development. Toxicological Research, 2021, 37, 147-162.	2.1	44
12	Loss of Aryl Hydrocarbon Receptor Promotes Colon Tumorigenesis in <i>ApcS580/+; KrasG12D/+</i> Mice. Molecular Cancer Research, 2021, 19, 771-783.	3.4	26
13	Broussochalcone A Is a Novel Inhibitor of the Orphan Nuclear Receptor NR4A1 and Induces Apoptosis in Pancreatic Cancer Cells. Molecules, 2021, 26, 2316.	3.8	5
14	Cigarette Smoking and Estrogen-Related Cancer. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1462-1471.	2.5	11
15	NR4A1 Ligands as Potent Inhibitors of Breast Cancer Cell and Tumor Growth. Cancers, 2021, 13, 2682.	3.7	15
16	Natural Products in the Prevention of Metabolic Diseases: Lessons Learned from the 20th KAST Frontier Scientists Workshop. Nutrients, 2021, 13, 1881.	4.1	4
17	Synergistic effects of methyl 2-cyano-3,11-dioxo-18beta-olean-1,-12-dien-30-oate and erlotinib on erlotinib-resistant non-small cell lung cancer cells. Journal of Pharmaceutical Analysis, 2021, 11, 799-807.	5.3	5
18	Orphan nuclear receptor 4A1 (NR4A1) and novel ligands. Essays in Biochemistry, 2021, 65, 877-886.	4.7	20

#	Article	IF	CITATIONS
19	Role of the Aryl Hydrocarbon Receptor (AhR) in Mediating the Effects of Coffee in the Colon. Molecular Nutrition and Food Research, 2021, 65, e2100539.	3.3	10
20	Transcription factors specificity protein and nuclear receptor 4A1 in pancreatic cancer. World Journal of Gastroenterology, 2021, 27, 6387-6398.	3.3	6
21	Diet–Host–Microbiota Interactions Shape Aryl Hydrocarbon Receptor Ligand Production to Modulate Intestinal Homeostasis. Annual Review of Nutrition, 2021, 41, 455-478.	10.1	23
22	Cigarette Smoking and Estrogen-Related Cancer—Reply. Cancer Epidemiology Biomarkers and Prevention, 2021, 30, 1978-1978.	2.5	0
23	Nuclear Receptor 4A2 (NR4A2/NURR1) Regulates Autophagy and Chemoresistance in Pancreatic Ductal Adenocarcinoma. Cancer Research Communications, 2021, 1, 65-78.	1.7	7
24	Flavonoids kaempferol and quercetin are nuclear receptor 4A1 (NR4A1, Nur77) ligands and inhibit rhabdomyosarcoma cell and tumor growth. Journal of Experimental and Clinical Cancer Research, 2021, 40, 392.	8.6	24
25	Protective Effects of Ghrelin on Fasting-Induced Muscle Atrophy in Aging Mice. Journals of Gerontology - Series A Biological Sciences and Medical Sciences, 2020, 75, 621-630.	3.6	56
26	Pharmacological activation of Nr4a rescues age-associated memory decline. Neurobiology of Aging, 2020, 85, 140-144.	3.1	24
27	Nuclear receptor 4A2 (NR4A2) is a druggable target for glioblastomas. Journal of Neuro-Oncology, 2020, 146, 25-39.	2.9	18
28	A Bis-Indole–Derived NR4A1 Antagonist Induces PD-L1 Degradation and Enhances Antitumor Immunity. Cancer Research, 2020, 80, 1011-1023.	0.9	25
29	Omeprazole Inhibits Glioblastoma Cell Invasion and Tumor Growth. Cancers, 2020, 12, 2097.	3.7	16
30	Aryl Hydrocarbon Receptor (AHR) Ligands as Selective AHR Modulators (SAhRMs). International Journal of Molecular Sciences, 2020, 21, 6654.	4.1	69
31	The Role of Self-Nanoemulsifying Drug Delivery Systems of CDODA-Me in Sensitizing Erlotinib-Resistant Non–Small Cell Lung Cancer. Journal of Pharmaceutical Sciences, 2020, 109, 1867-1882.	3.3	16
32	Ah receptor ligands and their impacts on gut resilience: structure–activity effects. Critical Reviews in Toxicology, 2020, 50, 463-473.	3.9	18
33	Bis-Indole–Derived Nuclear Receptor 4A1 (NR4A1, Nur77) Ligands as Inhibitors of Endometriosis. Endocrinology, 2020, 161, .	2.8	12
34	Targeting the Aryl Hydrocarbon Receptor in Stem Cells to Improve the Use of Food as Medicine. Current Stem Cell Reports, 2020, 6, 109-118.	1.6	5
35	Dopamine is an aryl hydrocarbon receptor agonist. Biochemical Journal, 2020, 477, 3899-3910.	3.7	16
36	Recent advances in understanding endocrine disruptors: DDT and related compounds. Faculty Reviews, 2020, 9, 7.	3.9	4

#	Article	IF	CITATIONS
37	Bis-indole derived nuclear receptor 4A1 (NR4A1) antagonists inhibit TGFβ-induced invasion of embryonal rhabdomyosarcoma cells. American Journal of Cancer Research, 2020, 10, 2495-2509.	1.4	3
38	Isoflavones as Ah Receptor Agonists in Colon-Derived Cell Lines: Structure–Activity Relationships. Chemical Research in Toxicology, 2019, 32, 2353-2364.	3.3	25
39	Inhibition of NR4A1 Promotes ROS Accumulation and IL24-Dependent Growth Arrest in Rhabdomyosarcoma. Molecular Cancer Research, 2019, 17, 2221-2232.	3.4	14
40	Strong adsorption of Polychlorinated Biphenyls by processed montmorillonite clays: Potential applications as toxin enterosorbents during disasters and floods. Environmental Pollution, 2019, 255, 113210.	7.5	30
41	Potent inhibition of breast cancer by bis-indole-derived nuclear receptor 4A1 (NR4A1) antagonists. Breast Cancer Research and Treatment, 2019, 177, 29-40.	2.5	24
42	The aryl hydrocarbon receptor is a tumor suppressor–like gene in glioblastoma. Journal of Biological Chemistry, 2019, 294, 11342-11353.	3.4	33
43	Nuclear receptor 4A1 (NR4A1) antagonists induce ROS-dependent inhibition of mTOR signaling in endometrial cancer. Gynecologic Oncology, 2019, 154, 218-227.	1.4	15
44	Structureâ€dependent activation of gene expression by bisâ€indole and quinolineâ€derived activators of nuclear receptor 4A2. Chemical Biology and Drug Design, 2019, 94, 1711-1720.	3.2	13
45	Activation of COUP-TFI by a Novel Diindolylmethane Derivative. Cells, 2019, 8, 220.	4.1	10
46	Reactive Oxygen Species (ROS)-Inducing Triterpenoid Inhibits Rhabdomyosarcoma Cell and Tumor Growth through Targeting Sp Transcription Factors. Molecular Cancer Research, 2019, 17, 794-805.	3.4	22
47	Dual targeting of Nur77 and AMPKα by isoalantolactone inhibits adipogenesis in vitro and decreases body fat mass in vivo. International Journal of Obesity, 2019, 43, 952-962.	3.4	22
48	Autophagy inhibition improves the chemotherapeutic efficacy of cruciferous vegetable-derived diindolymethane in a murine prostate cancer xenograft model. Investigational New Drugs, 2018, 36, 718-725.	2.6	7
49	The Nurr1 Ligand,1,1-bis(3â€2-Indolyl)-1-(<i>p</i> -Chlorophenyl)Methane, Modulates Glial Reactivity and Is Neuroprotective in MPTP-Induced Parkinsonism. Journal of Pharmacology and Experimental Therapeutics, 2018, 365, 636-651.	2.5	34
50	Metformin-induced anticancer activities: recent insights. Biological Chemistry, 2018, 399, 321-335.	2.5	51
51	Suppression of aberrant choroidal neovascularization through activation of the aryl hydrocarbon receptor. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2018, 1864, 1583-1595.	3.8	17
52	Structure-Dependent Modulation of Aryl Hydrocarbon Receptor-Mediated Activities by Flavonoids. Toxicological Sciences, 2018, 164, 205-217.	3.1	82
53	Specificity Protein Transcription Factors and Cancer: Opportunities for Drug Development. Cancer Prevention Research, 2018, 11, 371-382.	1.5	84
54	Aryl hydrocarbon receptor (AhR) ligands as selective AhR modulators: Genomic studies. Current Opinion in Toxicology, 2018, 11-12, 10-20.	5.0	43

#	Article	IF	CITATIONS
55	Interleukin-24 (IL24) Is Suppressed by PAX3-FOXO1 and Is a Novel Therapy for Rhabdomyosarcoma. Molecular Cancer Therapeutics, 2018, 17, 2756-2766.	4.1	13
56	Bortezomib Targets Sp Transcription Factors in Cancer Cells. Molecular Pharmacology, 2018, 94, 1187-1196.	2.3	11
57	Inhibition of pancreatic cancer Panc1 cell migration by omeprazole is dependent on aryl hydrocarbon receptor activation of JNK. Biochemical and Biophysical Research Communications, 2018, 501, 751-757.	2.1	17
58	Bis-Indole–Derived NR4A1 Ligands and Metformin Exhibit NR4A1-Dependent Glucose Metabolism and Uptake in C2C12 Cells. Endocrinology, 2018, 159, 1950-1963.	2.8	17
59	TGFβ-Induced Lung Cancer Cell Migration Is NR4A1-Dependent. Molecular Cancer Research, 2018, 16, 1991-2002.	3.4	27
60	Compensatory Expression of Nur77 and Nurr1 Regulates NF- <i>κ</i> B–Dependent Inflammatory Signaling in Astrocytes. Molecular Pharmacology, 2018, 94, 1174-1186.	2.3	40
61	A novel diindolylmethane analog, 1,1-bis(3'-indolyl)-1-(p-chlorophenyl) methane, inhibits the tumor necrosis factor-induced inflammatory response in primary murine synovial fibroblasts through a Nurr1-dependent mechanism. Molecular Immunology, 2018, 101, 46-54.	2.2	9
62	Role of metastasis-associated lung adenocarcinoma transcript-1 (MALAT-1) in pancreatic cancer. PLoS ONE, 2018, 13, e0192264.	2.5	36
63	CF3DODA-Me induces apoptosis, degrades Sp1, and blocks the transformation phase of the blebbishield emergency program. Apoptosis: an International Journal on Programmed Cell Death, 2017, 22, 719-729.	4.9	17
64	The nuclear orphan receptor NR4A1 regulates β1â€integrin expression in pancreatic and colon cancer cells and can be targeted by NR4A1 antagonists. Molecular Carcinogenesis, 2017, 56, 2066-2075.	2.7	18
65	Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target. Archives of Toxicology, 2017, 91, 2497-2513.	4.2	123
66	The aryl hydrocarbon receptor (AhR) as a drug target for cancer chemotherapy. Current Opinion in Toxicology, 2017, 2, 24-29.	5.0	72
67	Bardoxolone Methyl and a Related Triterpenoid Downregulate cMyc Expression in Leukemia Cells. Molecular Pharmacology, 2017, 91, 438-450.	2.3	11
68	Inactivation of the orphan nuclear receptor NR4A1 contributes to apoptosis induction by fangchinoline in pancreatic cancer cells. Toxicology and Applied Pharmacology, 2017, 332, 32-39.	2.8	22
69	NR4A1 inhibition synergizes with ibrutinib in killing mantle cell lymphoma cells. Blood Cancer Journal, 2017, 7, 632.	6.2	3
70	Carbidopa: a selective Ah receptor modulator (SAhRM). Biochemical Journal, 2017, 474, 3763-3765.	3.7	8
71	Transforming Growth Factor <i>β</i> /NR4A1-Inducible Breast Cancer Cell Migration and Epithelial-to-Mesenchymal Transition Is p38 <i>α</i> (Mitogen-Activated Protein Kinase 14) Dependent. Molecular and Cellular Biology, 2017, 37, .	2.3	45
72	Piperlongumine Induces Reactive Oxygen Species (ROS)-Dependent Downregulation of Specificity Protein Transcription Factors. Cancer Prevention Research, 2017, 10, 467-477.	1.5	59

#	Article	IF	CITATIONS
73	Penfluridol Represses Integrin Expression in Breast Cancer through Induction of Reactive Oxygen Species and Downregulation of Sp Transcription Factors. Molecular Cancer Therapeutics, 2017, 16, 205-216.	4.1	45
74	Pharmacological Activators of the NR4A Nuclear Receptors Enhance LTP in a CREB/CBP-Dependent Manner. Neuropsychopharmacology, 2017, 42, 1243-1253.	5.4	45
75	PAX3-FOXO1A Expression in Rhabdomyosarcoma Is Driven by the Targetable Nuclear Receptor NR4A1. Cancer Research, 2017, 77, 732-741.	0.9	24
76	Editor's Highlight: Microbial-Derived 1,4-Dihydroxy-2-naphthoic Acid and Related Compounds as Aryl Hydrocarbon Receptor Agonists/Antagonists: Structure–Activity Relationships and Receptor Modeling. Toxicological Sciences, 2017, 155, 458-473.	3.1	40
77	Short Chain Fatty Acids Enhance Aryl Hydrocarbon (Ah) Responsiveness in Mouse Colonocytes and Caco-2 Human Colon Cancer Cells. Scientific Reports, 2017, 7, 10163.	3.3	103
78	Specificity protein (Sp) transcription factors Sp1, Sp3 and Sp4 are non-oncogene addiction genes in cancer cells. Oncotarget, 2016, 7, 22245-22256.	1.8	85
79	CDODA-Me decreases specificity protein transcription factors and induces apoptosis in bladder cancer cells through induction of reactive oxygen species. Urologic Oncology: Seminars and Original Investigations, 2016, 34, 337.e11-337.e18.	1.6	18
80	NR4A1 Antagonists Inhibit β1-Integrin-Dependent Breast Cancer Cell Migration. Molecular and Cellular Biology, 2016, 36, 1383-1394.	2.3	49
81	2,3,7,8-Tetrachlorodibenzo- p -dioxin has both pro-carcinogenic and anti-carcinogenic effects on neuroendocrine prostate carcinoma formation in TRAMP mice. Toxicology and Applied Pharmacology, 2016, 305, 242-249.	2.8	16
82	Benzyl Isothiocyanate (BITC) Induces Reactive Oxygen Species-dependent Repression of STAT3 Protein by Down-regulation of Specificity Proteins in Pancreatic Cancer. Journal of Biological Chemistry, 2016, 291, 27122-27133.	3.4	44
83	Natural Products as Mechanismâ€based Anticancer Agents: Sp Transcription Factors as Targets. Phytotherapy Research, 2016, 30, 1723-1732.	5.8	75
84	Lipid-based oral delivery systems for skin deposition of a potential chemopreventive DIM derivative: characterization and evaluation. Drug Delivery and Translational Research, 2016, 6, 526-539.	5.8	7
85	miR-150 regulates obesity-associated insulin resistance by controlling B cell functions. Scientific Reports, 2016, 6, 20176.	3.3	61
86	High expression of orphan nuclear receptor NR4A1 in a subset of ovarian tumors with worse outcome. Gynecologic Oncology, 2016, 141, 348-356.	1.4	20
87	Ultra-flexible nanocarriers for enhanced topical delivery of a highly lipophilic antioxidative molecule for skin cancer chemoprevention. Colloids and Surfaces B: Biointerfaces, 2016, 143, 156-167.	5.0	29
88	Nuclear receptor 4A (NR4A) family – orphans no more. Journal of Steroid Biochemistry and Molecular Biology, 2016, 157, 48-60.	2.5	149
89	Nuclear receptor 4A1 (NR4A1) as a drug target for treating rhabdomyosarcoma (RMS). Oncotarget, 2016, 7, 31257-31269.	1.8	23
90	Sulindac sulfide inhibits colon cancer cell growth and downregulates specificity protein transcription factors. BMC Cancer, 2015, 15, 974.	2.6	27

#	Article	IF	CITATIONS
91	Nuclear Receptor 4A1 (NR4A1) as a Drug Target for Renal Cell Adenocarcinoma. PLoS ONE, 2015, 10, e0128308.	2.5	51
92	The long non-coding RNA HOTTIP enhances pancreatic cancer cell proliferation, survival and migration. Oncotarget, 2015, 6, 10840-10852.	1.8	134
93	Targeting Apoptosis Pathways in Cancer—Letter. Cancer Prevention Research, 2015, 8, 338-338.	1.5	4
94	The Nurr1 Activator 1,1-Bis(3′-Indolyl)-1-(<i>p</i> -Chlorophenyl)Methane Blocks Inflammatory Gene Expression in BV-2 Microglial Cells by Inhibiting Nuclear Factor <i>l°</i> B. Molecular Pharmacology, 2015, 87, 1021-1034.	2.3	62
95	Characterization and Biological Potency of Mono- to Tetra-Halogenated Carbazoles. Environmental Science & Technology, 2015, 49, 10658-10666.	10.0	77
96	Novel Para-Phenyl Substituted Diindolylmethanes Protect Against MPTP Neurotoxicity and Suppress Glial Activation in a Mouse Model of Parkinson's Disease. Toxicological Sciences, 2015, 143, 360-373.	3.1	43
97	MicroRNA-Specificity Protein (Sp) Transcription Factor Interactions and Significance in Carcinogenesis. Current Pharmacology Reports, 2015, 1, 73-78.	3.0	21
98	Omeprazole Inhibits Pancreatic Cancer Cell Invasion through a Nongenomic Aryl Hydrocarbon Receptor Pathway. Chemical Research in Toxicology, 2015, 28, 907-918.	3.3	59
99	Histone Deacetylase Inhibitors Inhibit Rhabdomyosarcoma by Reactive Oxygen Species–Dependent Targeting of Specificity Protein Transcription Factors. Molecular Cancer Therapeutics, 2015, 14, 2143-2153.	4.1	53
100	Dietary γ-Tocopherol–Rich Mixture Inhibits Estrogen-Induced Mammary Tumorigenesis by Modulating Estrogen Metabolism, Antioxidant Response, and PPARγ. Cancer Prevention Research, 2015, 8, 807-816.	1.5	30
101	A bioassay to measure energy metabolism in mouse colonic crypts, organoids, and sorted stem cells. American Journal of Physiology - Renal Physiology, 2015, 309, G1-G9.	3.4	72
102	A novel synthetic activator of Nurr1 induces dopaminergic gene expression and protects against 6-hydroxydopamine neurotoxicity in vitro. Neuroscience Letters, 2015, 607, 83-89.	2.1	36
103	Aryl Hydrocarbon Receptor Activity of Tryptophan Metabolites in Young Adult Mouse Colonocytes. Drug Metabolism and Disposition, 2015, 43, 1536-1543.	3.3	76
104	Nuclear receptor 4A1 as a drug target for breast cancer chemotherapy. Endocrine-Related Cancer, 2015, 22, 831-840.	3.1	51
105	Specificity protein (Sp) transcription factors and metformin regulate expression of the long non-coding RNA HULC. Oncotarget, 2015, 6, 26359-26372.	1.8	27
106	Mechanism of Action of Phenethylisothiocyanate and Other Reactive Oxygen Species-Inducing Anticancer Agents. Molecular and Cellular Biology, 2014, 34, 2382-2395.	2.3	100
107	The Transcriptional Repressor ZBTB4 Regulates EZH2 Through a MicroRNA-ZBTB4-Specificity Protein Signaling Axis. Neoplasia, 2014, 16, 1059-1069.	5.3	36
108	Diindolylmethane Analogs Bind NR4A1 and Are NR4A1 Antagonists in Colon Cancer Cells. Molecular Endocrinology, 2014, 28, 1729-1739.	3.7	79

#	Article	IF	CITATIONS
109	Microbiome-Derived Tryptophan Metabolites and Their Aryl Hydrocarbon Receptor-Dependent Agonist and Antagonist Activities. Molecular Pharmacology, 2014, 85, 777-788.	2.3	254
110	Minireview: Role Of Orphan Nuclear Receptors in Cancer and Potential as Drug Targets. Molecular Endocrinology, 2014, 28, 157-172.	3.7	128
111	The Orphan Nuclear Receptor NR4A1 (Nur77) Regulates Oxidative and Endoplasmic Reticulum Stress in Pancreatic Cancer Cells. Molecular Cancer Research, 2014, 12, 527-538.	3.4	87
112	Mechanism of Metformin-dependent Inhibition of Mammalian Target of Rapamycin (mTOR) and Ras Activity in Pancreatic Cancer. Journal of Biological Chemistry, 2014, 289, 27692-27701.	3.4	111
113	The aryl hydrocarbon receptor ligand omeprazole inhibits breast cancer cell invasion and metastasis. BMC Cancer, 2014, 14, 498.	2.6	118
114	Transcription factor Sp1, also known as specificity protein 1 as a therapeutic target. Expert Opinion on Therapeutic Targets, 2014, 18, 759-769.	3.4	89
115	Interferon Tau Alleviates Obesity-Induced Adipose Tissue Inflammation and Insulin Resistance by Regulating Macrophage Polarization. PLoS ONE, 2014, 9, e98835.	2.5	26
116	Inhibition of rhabdomyosarcoma cell and tumor growth by targeting specificity protein (Sp) transcription factors. International Journal of Cancer, 2013, 132, 795-806.	5.1	35
117	Endocrine disruptors and falling sperm counts: lessons learned or not!. Asian Journal of Andrology, 2013, 15, 191-194.	1.6	19
118	Role of the Aryl Hydrocarbon Receptor in Carcinogenesis and Potential as a Drug Target. Toxicological Sciences, 2013, 135, 1-16.	3.1	230
119	Neuroprotective Efficacy and Pharmacokinetic Behavior of Novel Anti-Inflammatory <i>Para</i> -Phenyl Substituted Diindolylmethanes in a Mouse Model of Parkinson's Disease. Journal of Pharmacology and Experimental Therapeutics, 2013, 345, 125-138.	2.5	48
120	MiR-150 Inhibits MLL-AF9 Associated Leukemia By Suppressing Leukemic Stem Cells. Blood, 2013, 122, 3764-3764.	1.4	0
121	Aryl Hydrocarbon Receptor Agonists Induce MicroRNA-335 Expression and Inhibit Lung Metastasis of Estrogen Receptor Negative Breast Cancer Cells. Molecular Cancer Therapeutics, 2012, 11, 108-118.	4.1	85
122	Celastrol decreases specificity proteins (Sp) and fibroblast growth factor receptor-3 (FGFR3) in bladder cancer cells. Carcinogenesis, 2012, 33, 886-894.	2.8	57
123	Aryl Hydrocarbon Receptor (AHR)-Active Pharmaceuticals Are Selective AHR Modulators in MDA-MB-468 and BT474 Breast Cancer Cells. Journal of Pharmacology and Experimental Therapeutics, 2012, 343, 333-341.	2.5	77
124	Betulinic Acid Targets YY1 and ErbB2 through Cannabinoid Receptor-Dependent Disruption of MicroRNA-27a:ZBTB10 in Breast Cancer. Molecular Cancer Therapeutics, 2012, 11, 1421-1431.	4.1	79
125	Curcumin and synthetic analogs induce reactive oxygen species and decreases specificity protein (Sp) transcription factors by targeting microRNAs. BMC Cancer, 2012, 12, 564.	2.6	145
126	Structure-dependent activation of NR4A2 (Nurr1) by 1,1-bis(3′-indolyl)-1-(aromatic)methane analogs in pancreatic cancer cells. Biochemical Pharmacology, 2012, 83, 1445-1455.	4.4	66

#	Article	IF	CITATIONS
127	Betulinic acid inhibits colon cancer cell and tumor growth and induces proteasome-dependent and -independent downregulation of specificity proteins (Sp) transcription factors. BMC Cancer, 2011, 11, 371.	2.6	139
128	Targeting NR4A1 (TR3) in cancer cells and tumors. Expert Opinion on Therapeutic Targets, 2011, 15, 195-206.	3.4	94
129	Inhibition of pituitary tumorâ€ŧransforming geneâ€1 in thyroid cancer cells by drugs that decrease specificity proteins. Molecular Carcinogenesis, 2011, 50, 655-667.	2.7	35
130	GT-094, a NO-NSAID, Inhibits Colon Cancer Cell Growth by Activation of a Reactive Oxygen Species-MicroRNA-27a: ZBTB10-Specificity Protein Pathway. Molecular Cancer Research, 2011, 9, 195-202.	3.4	108
131	Reduced expression of proâ€invasive genes in xenographs of MDAâ€MBâ€231 breast cancer cells by Betulinic Acid is mediated by downâ€regulation of microRNA27a. FASEB Journal, 2011, 25, .	0.5	0
132	Arsenic trioxide downregulates specificity protein (Sp) transcription factors and inhibits bladder cancer cell and tumor growth. Experimental Cell Research, 2010, 316, 2174-2188.	2.6	77
133	Drugs that Target Specificity Proteins Downregulate Epidermal Growth Factor Receptor in Bladder Cancer Cells. Molecular Cancer Research, 2010, 8, 739-750.	3.4	95
134	Methyl 2-Cyano-3,12-dioxooleana-1,9-dien-28-oate Decreases Specificity Protein Transcription Factors and Inhibits Pancreatic Tumor Growth: Role of MicroRNA-27a. Molecular Pharmacology, 2010, 78, 226-236.	2.3	92
135	Inactivation of the Orphan Nuclear Receptor TR3/Nur77 Inhibits Pancreatic Cancer Cell and Tumor Growth. Cancer Research, 2010, 70, 6824-6836.	0.9	139
136	Inhibition of NFκB and Pancreatic Cancer Cell and Tumor Growth by Curcumin Is Dependent on Specificity Protein Down-regulation. Journal of Biological Chemistry, 2010, 285, 25332-25344.	3.4	165
137	The aryl hydrocarbon receptor as a target for estrogen receptor-negative breast cancer chemotherapy. Endocrine-Related Cancer, 2009, 16, 835-844.	3.1	77
138	The selective aryl hydrocarbon receptor modulator 6-methyl-1,3,8-trichlorodibenzofuran inhibits prostate tumor metastasis in TRAMP mice. Biochemical Pharmacology, 2009, 77, 1151-1160.	4.4	44
139	Oncogenic microRNAâ€27a is a target for anticancer agent methyl 2â€cyanoâ€3,11â€dioxoâ€18βâ€oleanâ€1,1 in colon cancer cells. International Journal of Cancer, 2009, 125, 1965-1974.	2â€dienâ 5.1	€3Qâ€oate 125
140	Structure-dependent inhibition of bladder and pancreatic cancer cell growth by 2-substituted glycyrrhetinic and ursolic acid derivatives. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 2633-2639.	2.2	96
141	Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. Journal of Molecular Endocrinology, 2008, 41, 263-275.	2.5	278
142	1,1-Bis(3′-indolyl)-1-(<i>p</i> -chlorophenyl)methane activates the orphan nuclear receptor Nurr1 and inhibits bladder cancer growth. Molecular Cancer Therapeutics, 2008, 7, 3825-3833.	4.1	95
143	Cancer chemotherapy with indole-3-carbinol, bis(3′-indolyl)methane and synthetic analogs. Cancer Letters, 2008, 269, 326-338.	7.2	237
144	The Effects of betulinic acid on microRNAâ€27a regulated target genes in MDAâ€MBâ€231 breast cancer cells. FASEB Journal, 2008, 22, 158.8.	0.5	3

#	Article	IF	CITATIONS
145	Nur77 Agonists Induce Proapoptotic Genes and Responses in Colon Cancer Cells through Nuclear Receptor–Dependent and Nuclear Receptor–Independent Pathways. Cancer Research, 2007, 67, 674-683.	0.9	160
146	Betulinic Acid Inhibits Prostate Cancer Growth through Inhibition of Specificity Protein Transcription Factors. Cancer Research, 2007, 67, 2816-2823.	0.9	275
147	The role of xenoestrogenic compounds in the development of breast cancer. Trends in Pharmacological Sciences, 2006, 27, 447-454.	8.7	20
148	Inhibition of Bladder Tumor Growth by 1,1-Bis(3′-Indolyl)-1-(p-Substitutedphenyl)Methanes: A New Class of Peroxisome Proliferator-Activated Receptor γ Agonists. Cancer Research, 2006, 66, 412-418.	0.9	93
149	Aryl hydrocarbon receptor agonists directly activate estrogen receptor α in MCF-7 breast cancer cells. Biological Chemistry, 2006, 387, 1209-13.	2.5	62
150	Clinical correlates of environmental endocrine disruptors. Trends in Endocrinology and Metabolism, 2005, 16, 139-144.	7.1	93
151	Activation of Nur77 by Selected 1,1-Bis(3′-indolyl)-1-(p-substituted phenyl)methanes Induces Apoptosis through Nuclear Pathways. Journal of Biological Chemistry, 2005, 280, 24903-24914.	3.4	145
152	Nuclear Receptor-Mediated Transactivation Through Interaction with Sp Proteins. Progress in Molecular Biology and Translational Science, 2004, 77, 1-36.	1.9	128
153	Endocrine disruptors and human health: is there a problem. Toxicology, 2004, 205, 3-10.	4.2	137
154	Aryl hydrocarbon receptor-mediated inhibition of LNCaP prostate cancer cell growth and hormone-induced transactivation. Journal of Steroid Biochemistry and Molecular Biology, 2004, 88, 27-36.	2.5	75
155	A new class of peroxisome proliferator-activated receptor gamma (PPARgamma) agonists that inhibit growth of breast cancer cells: 1,1-Bis(3'-indolyl)-1-(p-substituted phenyl)methanes. Molecular Cancer Therapeutics, 2004, 3, 247-60.	4.1	55
156	Inhibitory Aryl Hydrocarbon Receptorâ^'Estrogen Receptor α Cross-Talk and Mechanisms of Action. Chemical Research in Toxicology, 2003, 16, 807-816.	3.3	305
157	Transcriptional activation of rat creatine kinase B by 17?-estradiol in MCF-7 cells involves an estrogen responsive element and GC-rich sites. Journal of Cellular Biochemistry, 2002, 84, 156-172.	2.6	23
158	Increased arylhydrocarbon receptor expression offers a potential therapeutic target for pancreatic cancer. Oncogene, 2002, 21, 6059-6070.	5.9	123
159	Mechanism of action and development of selective aryl hydrocarbon receptor modulators for treatment of hormone-dependent cancers (Review). International Journal of Oncology, 2002, 20, 1123-8.	3.3	32
160	Transcriptional Activation of Deoxyribonucleic Acid Polymerase Gene Expression in MCF-7 Cells by 17Â-Estradiol. Endocrinology, 2001, 142, 1000-1008.	2.8	16
161	Mechanisms of inhibitory aryl hydrocarbon receptor-estrogen receptor crosstalk in human breast cancer cells. Journal of Mammary Gland Biology and Neoplasia, 2000, 5, 295-306.	2.7	147
162	3',4'-Dimethoxyflavone as an Aryl Hydrocarbon Receptor Antagonist in Human Breast Cancer Cells. Toxicological Sciences, 2000, 58, 235-242.	3.1	65

#	Article	IF	CITATIONS
163	Estrogen and aryl hydrocarbon receptor expression and crosstalk in human Ishikawa endometrial cancer cells. Journal of Steroid Biochemistry and Molecular Biology, 2000, 72, 197-207.	2.5	80
164	Crosstalk between estrogen receptor \hat{I}_{\pm} and the aryl hydrocarbon receptor in breast cancer cells involves unidirectional activation of proteasomes. FEBS Letters, 2000, 478, 109-112.	2.8	98
165	Transcriptional Activation of Thymidylate Synthase by 17Â-Estradiol in MCF-7 Human Breast Cancer Cells. Endocrinology, 2000, 141, 2439-2449.	2.8	9
166	Development of selective aryl hydrocarbon receptor modulators for treatment of breast cancer. Expert Opinion on Investigational Drugs, 1999, 8, 1385-1396.	4.1	59
167	Estrogen Induces Adenosine Deaminase Gene Expression in MCF-7 Human Breast Cancer Cells: Role of Estrogen Receptor-Sp1 Interactions**This work was supported by the National Institutes of Health (Grant CA-76636), the Welch Foundation, and the Texas Agricultural Experiment Station Endocrinology, 1999, 140, 219-227.	2.8	75
168	Estrogen and aryl hydrocarbon responsiveness of ECC-1 endometrial cancer cells. Molecular and Cellular Endocrinology, 1999, 150, 11-21.	3.2	36
169	Differential Interaction of the Methoxychlor Metabolite 2,2-Bis-(p-Hydroxyphenyl)-1,1,1-Trichloroethane with Estrogen Receptors and Â. Endocrinology, 1999, 140, 5746-5753.	2.8	63
170	Transcriptional Activation of Insulin-Like Growth Factor-Binding Protein-4 by 17Â-Estradiol in MCF-7 Cells: Role of Estrogen Receptor-Sp1 Complexes. Endocrinology, 1999, 140, 2501-2508.	2.8	38
171	Estrogen-Induced c-fos Protooncogene Expression in MCF-7 Human Breast Cancer Cells: Role of Estrogen Receptor Sp1 Complex Formation*. Endocrinology, 1998, 139, 1981-1990.	2.8	171
172	Estrogen-Induced c-fos Protooncogene Expression in MCF-7 Human Breast Cancer Cells: Role of Estrogen Receptor Sp1 Complex Formation. Endocrinology, 1998, 139, 1981-1990.	2.8	47
173	Identification of a Motif within the 5†Regulatory Region of pS2 Which Is Responsible for AP-1 Binding and TCDD-Mediated Suppressionâ€. Biochemistry, 1997, 36, 6080-6089.	2.5	135
174	Limitations of the toxic equivalency factor approach for risk assessment of TCDD and related compounds. Teratogenesis, Carcinogenesis, and Mutagenesis, 1997, 17, 285-304.	0.8	87
175	Estrogenic Activity of a Dieldrin/Toxaphene Mixture in the Mouse Uterus, MCF-7 Human Breast Cancer Cells, and Yeast-Based Estrogen Receptor Assays: No Apparent Synergism. Endocrinology, 1997, 138, 1520-1527.	2.8	35
176	Isolation and characterization of variant benzo[a]pyrene-resistant T47D human breast-cancer cells. , 1996, 66, 117-123.		8
177	CHARACTERIZATION OF A BOTTLENOSE DOLPHIN (TURSIOPS TRUNCATUS) KIDNEY EPITHELIAL CELL LINE. Marine Mammal Science, 1994, 10, 52-69.	1.8	25
178	Polychlorinated dibenzoâ€pâ€dioxins and related compounds: Sources, environmental distribution and risk assessment. Journal of Environmental Science and Health, Part C: Environmental Carcinogenesis and Ecotoxicology Reviews, 1991, 9, 261-302.	2.9	51
179	Polychlorinated Biphenyls (PCBs), Dibenzo-p-Dioxins (PCDDs), Dibenzofurans (PCDFs), and Related Compounds: Environmental and Mechanistic Considerations Which Support the Development of Toxic Equivalency Factors (TEFs). Critical Reviews in Toxicology, 1990, 21, 51-88.	3.9	1,702
180	Gas chromatographic/mass spectrometric characteristics of purified synthetic isomers of tetrachlorodibenzofuran. Biomedical & Environmental Mass Spectrometry, 1987, 14, 457-464.	1.6	11

#	Article	IF	CITATIONS
181	Gas chromatographic/mass spectrometric analysis of specific isomers of polychlorodibenzofurans. Biological Mass Spectrometry, 1985, 12, 247-253.	0.5	22
182	Polychlorinated biphenyls: Correlation between in vivo and in vitro quantitative structureâ€activity relationships (QSARs). Journal of Toxicology and Environmental Health - Part A: Current Issues, 1985, 16, 379-388.	2.3	122
183	Polychlorinated Biphenyls (PCBs) and Polybrominated Biphenyls (PBBs): Biochemistry, Toxicology, and Mechanism of Action. CRC Critical Reviews in Toxicology, 1984, 13, 319-395.	4.9	714