Barnabas H Daru

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3408147/publications.pdf

Version: 2024-02-01

137 papers

11,383 citations

44069 48 h-index 100 g-index

148 all docs 148 docs citations

times ranked

148

13815 citing authors

#	Article	IF	CITATIONS
1	Host phylogenetic diversity predicts the global extent and composition of tree pests. Ecology Letters, 2022, 25, 101-112.	6.4	11
2	Global camera trap synthesis highlights the importance of protected areas in maintaining mammal diversity. Conservation Letters, 2022, 15 , .	5.7	35
3	A global analysis of tree pests and emerging pest threats. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2113298119.	7.1	5
4	Phylogenetic and functional clustering illustrate the roles of adaptive radiation and dispersal filtering in jointly shaping lateâ€Quaternary mammal assemblages on oceanic islands. Ecology Letters, 2022, 25, 1250-1262.	6.4	16
5	Detecting the phylogenetic signal of glacial refugia in a bryodiversity hotspot outside the tropics. Diversity and Distributions, 2022, 28, 2681-2695.	4.1	5
6	Assessing the phylogenetic host breadth of millet pathogens and its implication for disease spillover. Ecological Solutions and Evidence, 2021, 2, e12040.	2.0	4
7	Ecophylogenetics redux. Ecology Letters, 2021, 24, 1073-1088.	6.4	35
8	Exploring a new way to think about climate regions. ELife, 2021, 10, .	6.0	2
9	Opposing macroevolutionary and traitâ€mediated patterns of threat and naturalisation in flowering plants. Ecology Letters, 2021, 24, 1237-1250.	6.4	8
10	Impediments to Understanding Seagrasses' Response to Global Change. Frontiers in Marine Science, 2021, 8, .	2.5	9
11	Phenological sensitivity to temperature mediates herbivory. Global Change Biology, 2021, 27, 2315-2327.	9.5	23
12	Migratory birds aid the redistribution of plants to new climates. Nature, 2021, 595, 34-36.	27.8	2
13	Identifying co-phylogenetic hotspots for zoonotic disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200363.	4.0	6
14	Towards a phylogenetic ecology of plant pests and pathogens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200359.	4.0	27
15	Bias assessments to expand research harnessing biological collections. Trends in Ecology and Evolution, 2021, 36, 1071-1082.	8.7	30
16	Forecasting parasite sharing under climate change. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200360.	4.0	19
17	The ghost of hosts past: impacts of host extinction on parasite specificity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2021, 376, 20200351.	4.0	14
18	Widespread homogenization of plant communities in the Anthropocene. Nature Communications, 2021, 12, 6983.	12.8	57

#	Article	IF	CITATIONS
19	The ecology and evolution of seed predation by Darwin's finches on <i>Tribulus cistoides</i> on the Galšpagos Islands. Ecological Monographs, 2020, 90, e01392.	5.4	15
20	Climate change and the future restructuring of Neotropical anuran biodiversity. Ecography, 2020, 43, 222-235.	4.5	34
21	Savanna tree evolutionary ages inform the reconstruction of the paleoenvironment of our hominin ancestors. Scientific Reports, 2020, 10, 12430.	3.3	15
22	phyloregion: R package for biogeographical regionalization and macroecology. Methods in Ecology and Evolution, 2020, 11, 1483-1491.	5. 2	70
23	Identifying biodiversity knowledge gaps for conserving South Africa's endemic flora. Biodiversity and Conservation, 2020, 29, 2803-2819.	2.6	26
24	Endemism patterns are scale dependent. Nature Communications, 2020, 11, 2115.	12.8	56
25	The interaction of phylogeny and community structure: Linking the community composition and trait evolutionÂof clades. Global Ecology and Biogeography, 2019, 28, 1499-1511.	5. 8	14
26	Invasive species differ in key functional traits from native and nonâ€invasive alien plant species. Journal of Vegetation Science, 2019, 30, 994-1006.	2.2	64
27	Temperature controls phenology in continuously flowering <i>Protea</i> species of subtropical Africa. Applications in Plant Sciences, 2019, 7, e01232.	2.1	17
28	Spatial overlaps between the global protected areas network and terrestrial hotspots of evolutionary diversity. Global Ecology and Biogeography, 2019, 28, 757-766.	5 . 8	54
29	Herbarium specimens reveal increasing herbivory over the past century. Journal of Ecology, 2019, 107, 105-117.	4.0	56
30	A comparison of phylogenetic and species beta diversity measures describing vegetation assemblages along an elevation gradient. Journal of Vegetation Science, 2019, 30, 98-107.	2.2	4
31	Phylogenetically weighted regression: A method for modelling nonâ€stationarity on evolutionary trees. Global Ecology and Biogeography, 2019, 28, 275-285.	5. 8	6
32	Biological collections for understanding biodiversity in the Anthropocene. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170386.	4.0	161
33	A novel proof of concept for capturing the diversity of endophytic fungi preserved in herbarium specimens. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170395.	4.0	28
34	Museum specimens provide novel insights into changing plant–herbivore interactions. Philosophical Transactions of the Royal Society B: Biological Sciences, 2019, 374, 20170393.	4.0	37
35	The macroecology and macroevolution of plant species at risk. New Phytologist, 2019, 222, 708-713.	7.3	28
36	Global macroevolution and macroecology of passerine song. Evolution; International Journal of Organic Evolution, 2018, 72, 944-960.	2.3	34

#	Article	IF	Citations
37	Assessing amongâ€lineage variability in phylogenetic imputation of functional trait datasets. Ecography, 2018, 41, 1740-1749.	4.5	26
38	The unrealized potential of herbaria for global change biology. Ecological Monographs, 2018, 88, 505-525.	5.4	126
39	Building up biogeography: Pattern to process. Journal of Biogeography, 2018, 45, 1223-1230.	3.0	25
40	Evolutionary Rates Standardized for Evolutionary Space: Perspectives on Trait Evolution. Trends in Ecology and Evolution, 2018, 33, 379-389.	8.7	6
41	Widespread sampling biases in herbaria revealed from largeâ€scale digitization. New Phytologist, 2018, 217, 939-955.	7.3	271
42	Unravelling the evolutionary origins of biogeographic assemblages. Diversity and Distributions, 2018, 24, 313-324.	4.1	22
43	Towards an ecoâ€phylogenetic framework for infectious disease ecology. Biological Reviews, 2018, 93, 950-970.	10.4	63
44	Complexity is complicated and so too is comparing complexity metricsâ€A response to Mikula etÂal. (2018). Evolution; International Journal of Organic Evolution, 2018, 72, 2836-2838.	2.3	3
45	On the relationship between phylogenetic diversity and trait diversity. Ecology, 2018, 99, 1473-1479.	3.2	136
46	Phylogenetic diversity patterns in Himalayan forests reveal evidence for environmental filtering of distinct lineages. Ecosphere, 2018, 9, e02157.	2.2	30
47	Factors influencing bacterial microbiome composition in a wild non-human primate community in TaÃ⁻ National Park, Cà te d'Ivoire. ISME Journal, 2018, 12, 2559-2574.	9.8	31
48	Predicting loss of evolutionary history: Where are we?. Biological Reviews, 2017, 92, 271-291.	10.4	67
49	Habitat filtering not dispersal limitation shapes oceanic island floras: species assembly of the Galápagos archipelago. Ecology Letters, 2017, 20, 495-504.	6.4	83
50	Testing the reliability of standard and complementary DNA barcodes for the monocot subfamily Alooideae from South Africa. Genome, 2017, 60, 337-347.	2.0	4
51	Why phylogenies do not always predict ecological differences. Ecological Monographs, 2017, 87, 535-551.	5.4	148
52	Combining phylogeny and coâ€occurrence to improve single species distribution models. Global Ecology and Biogeography, 2017, 26, 740-752.	5.8	33
53	Ten years of barcoding at the African Centre for DNA Barcoding. Genome, 2017, 60, 629-638.	2.0	18
54	Integrating biogeography, threat and evolutionary data to explore extinction crisis in the taxonomic group of cycads. Ecology and Evolution, 2017, 7, 2735-2746.	1.9	36

#	Article	IF	CITATIONS
55	Climate change may reduce the spread of nonâ€native species. Ecosphere, 2017, 8, e01694.	2.2	53
56	Understanding the Processes Underpinning Patterns of Phylogenetic Regionalization. Trends in Ecology and Evolution, 2017, 32, 845-860.	8.7	84
57	A statistical estimator for determining the limits of contemporary and historic phenology. Nature Ecology and Evolution, 2017, 1, 1876-1882.	7.8	81
58	A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biological Reviews, 2017, 92, 698-715.	10.4	570
59	Phylogenetic regionalization of marine plants reveals close evolutionary affinities among disjunct temperate assemblages. Biological Conservation, 2017, 213, 351-356.	4.1	17
60	Jointly modeling niche width and phylogenetic distance to explain species coâ€occurrence. Ecosphere, 2017, 8, e01891.	2.2	8
61	Tongues on the EDGE: language preservation priorities based on threat and lexical distinctiveness. Royal Society Open Science, 2017, 4, 171218.	2.4	2
62	A Complete Fossil-Calibrated Phylogeny of Seed Plant Families as a Tool for Comparative Analyses: Testing the †Time for Speciation' Hypothesis. PLoS ONE, 2016, 11, e0162907.	2.5	32
63	Influence of tree shape and evolutionary timeâ€scale on phylogenetic diversity metrics. Ecography, 2016, 39, 913-920.	4.5	118
64	Opportunities for unlocking the potential of genomics for <scp>A</scp> frican trees. New Phytologist, 2016, 210, 772-778.	7.3	11
65	Response to Strona & Dr. Fattorini: are generalist parasites being lost from their hosts?. Journal of Animal Ecology, 2016, 85, 624-627.	2.8	1
66	Ground ice melt in the high Arctic leads to greater ecological heterogeneity. Journal of Ecology, 2016, 104, 114-124.	4.0	23
67	A novel phylogenetic regionalization of phytogeographical zones of southern Africa reveals their hidden evolutionary affinities. Journal of Biogeography, 2016, 43, 155-166.	3.0	58
68	Multiple routes underground? Frost alone cannot explain the evolution of underground trees. New Phytologist, 2016, 209, 910-912.	7.3	11
69	A Search for a Single DNA Barcode for Seagrasses of the World. , 2016, , 313-330.		3
70	Spiny plants, mammal browsers, and the origin of African savannas. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E5572-9.	7.1	132
71	Contrasting lineageâ€specific patterns conceal community phylogenetic structure in larger clades. Journal of Vegetation Science, 2016, 27, 69-79.	2.2	18
72	The macroecology of infectious diseases: a new perspective on globalâ€scale drivers of pathogen distributions and impacts. Ecology Letters, 2016, 19, 1159-1171.	6.4	126

#	Article	IF	Citations
73	Deconstructing the relationships between phylogenetic diversity and ecology: a case study on ecosystem functioning. Ecology, 2016, 97, 2212-2222.	3.2	34
74	Marine protected areas are insufficient to conserve global marine plant diversity. Global Ecology and Biogeography, 2016, 25, 324-334.	5.8	14
75	Reconsidering the Loss of Evolutionary History: How Does Non-random Extinction Prune the Tree-of-Life?. Topics in Biodiversity and Conservation, 2016, , 57-80.	1.0	13
76	Ecosystem Functions across Trophic Levels Are Linked to Functional and Phylogenetic Diversity. PLoS ONE, 2015, 10, e0117595.	2.5	60
77	DNA barcodes reveal microevolutionary signals in fire response trait in two legume genera. AoB PLANTS, 2015, 7, plv124.	2.3	8
78	Phylogenetic exploration of commonly used medicinal plants in <scp>S</scp> outh <scp>A</scp> frica. Molecular Ecology Resources, 2015, 15, 405-413.	4.8	47
79	Losing history: how extinctions prune features from the tree of life. Philosophical Transactions of the Royal Society B: Biological Sciences, 2015, 370, 20140006.	4.0	16
80	The path to host extinction can lead to loss of generalist parasites. Journal of Animal Ecology, 2015, 84, 978-984.	2.8	35
81	Disentangling dispersal from phylogeny in the colonization capacity of forest understorey plants. Journal of Ecology, 2015, 103, 175-183.	4.0	29
82	The phylogenetics of succession can guide restoration: an example from abandoned mine sites in the subarctic. Journal of Applied Ecology, 2015, 52, 1509-1517.	4.0	44
83	The predator-prey power law: Biomass scaling across terrestrial and aquatic biomes. Science, 2015, 349, aac6284.	12.6	235
84	Spatial incongruence among hotspots and complementary areas of tree diversity in southern <scp>A</scp> frica. Diversity and Distributions, 2015, 21, 769-780.	4.1	49
85	African Continent a Likely Origin of Family Combretaceae (Myrtales). A Biogeographical View. Annual Research & Review in Biology, 2015, 8, 1-20.	0.4	7
86	Nodule Worm Infection in Humans and Wild Primates in Uganda: Cryptic Species in a Newly Identified Region of Human Transmission. PLoS Neglected Tropical Diseases, 2014, 8, e2641.	3.0	63
87	Hidden Population Structure and Cross-species Transmission of Whipworms (Trichuris sp.) in Humans and Non-human Primates in Uganda. PLoS Neglected Tropical Diseases, 2014, 8, e3256.	3.0	64
88	Differences in evolutionary history translate into differences in invasion success of alien mammals in South Africa. Ecology and Evolution, 2014, 4, 2115-2123.	1.9	5
89	Evidence of constant diversification punctuated by a mass extinction in the African cycads. Ecology and Evolution, 2014, 4, 50-58.	1.9	28
90	A phylogenetic comparative study of flowering phenology along an elevational gradient in the Canadian subarctic. International Journal of Biometeorology, 2014, 58, 455-462.	3.0	41

#	Article	IF	CITATIONS
91	Glaciation as an historical filter of belowâ€ground biodiversity. Journal of Biogeography, 2014, 41, 1204-1214.	3.0	44
92	Macroecological and macroevolutionary patterns of leaf herbivory across vascular plants. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20140555.	2.6	109
93	Predicting flowering phenology in a subarctic plant community. Botany, 2014, 92, 749-756.	1.0	9
94	Savanna fire and the origins of the â€~underground forests' of <scp>A</scp> frica. New Phytologist, 2014, 204, 201-214.	7.3	179
95	A Molecular Phylogeny and Generic Classification of Asphodelaceae subfamily Alooideae: A Final Resolution of the Prickly Issue of Polyphyly in the Alooids?. Systematic Botany, 2014, 39, 55-74.	0.5	57
96	Morphological and molecular identification of filamentous Aspergillus flavus and Aspergillus parasiticus isolated from compound feeds in South Africa. Food Microbiology, 2014, 44, 180-184.	4.2	23
97	Phylogenetic conservatism in plant phenology. Journal of Ecology, 2013, 101, 1520-1530.	4.0	182
98	Phylogenetic position and revised classification of <i> Acacia s.l. </i> (Fabaceae: Mimosoideae) in Africa, including new combinations in <i> Vachellia </i> Senegalia Botanical Journal of the Linnean Society, 2013, 172, 500-523.	1.6	218
99	Temperatureâ€dependent shifts in phenology contribute to the success of exotic species with climate change. American Journal of Botany, 2013, 100, 1407-1421.	1.7	140
100	Large herbivores favour species diversity but have mixed impacts on phylogenetic community structure in an <scp>A</scp> frican savanna ecosystem. Journal of Ecology, 2013, 101, 614-625.	4.0	27
101	Incorporating trnH-psbA to the core DNA barcodes improves significantly species discrimination within southern African Combretaceae. ZooKeys, 2013, 365, 129-147.	1.1	34
102	Efficacy of the core DNA barcodes in identifying processed and poorly conserved plant materials commonly used in South African traditional medicine. ZooKeys, 2013, 365, 215-233.	1.1	16
103	Revisiting the impacts of non-random extinction on the tree-of-life. Biology Letters, 2013, 9, 20130343.	2.3	30
104	The study of parasite sharing for surveillance of zoonotic diseases. Environmental Research Letters, 2013, 8, 015036.	5.2	20
105	Molecular and morphological analysis of subfamily Alooideae (Asphodelaceae) and the inclusion of <i>Chortolirion</i> in <i>Aloe</i> Taxon, 2013, 62, 62-76.	0.7	36
106	A Global Trend towards the Loss of Evolutionarily Unique Species in Mangrove Ecosystems. PLoS ONE, 2013, 8, e66686.	2.5	54
107	How global extinctions impact regional biodiversity in mammals. Biology Letters, 2012, 8, 222-225.	2.3	28
108	Incompletely resolved phylogenetic trees inflate estimates of phylogenetic conservatism. Ecology, 2012, 93, 242-247.	3.2	75

#	Article	IF	Citations
109	Using phylogenetic trees to test for character displacement: a model and an example from a desert mammal community. Ecology, 2012, 93, S44.	3.2	23
110	Fig-Frugivore Interactions Follow a Constrained Brownian Motion Model of Evolution in an Important Bird Area, West Africa. Israel Journal of Ecology and Evolution, 2012, 58, 39-51.	0.6	2
111	Incorporating Geographical and Evolutionary Rarity into Conservation Prioritization. Conservation Biology, 2012, 26, 593-601.	4.7	60
112	Sensitivity of Spring Phenology to Warming Across Temporal and Spatial Climate Gradients in Two Independent Databases. Ecosystems, 2012, 15, 1283-1294.	3.4	107
113	Different evolutionary histories underlie congruent species richness gradients of birds and mammals. Journal of Biogeography, 2012, 39, 825-841.	3.0	84
114	Exploring the phylogenetic history of mammal species richness. Global Ecology and Biogeography, 2012, 21, 1096-1105.	5.8	39
115	Phylogenetic Patterns of Extinction Risk in the Eastern Arc Ecosystems, an African Biodiversity Hotspot. PLoS ONE, 2012, 7, e47082.	2.5	33
116	DNA barcoding reveals micro-evolutionary changes and river system-level phylogeographic resolution of African silver catfish, <l>Schilbe intermedius</l> (Actinopterygii:) Tj ETQq0 0 0 rgBT /Ove	erlock 10 T	f 50 462 Td (
117	Ichthyologica Et Piscatoria, 2012, 42, 307-320. Quantifying Biodiversity: Does It Matter What We Measure?., 2011,, 43-60.		18
118	Predicting phenology by integrating ecology, evolution and climate science. Global Change Biology, 2011, 17, 3633-3643.	9.5	314
119	NEUTRAL BIODIVERSITY THEORY CAN EXPLAIN THE IMBALANCE OF PHYLOGENETIC TREES BUT NOT THE TEMPO OF THEIR DIVERSIFICATION. Evolution; International Journal of Organic Evolution, 2011, 65, 1841-1850.	2.3	57
120	Phylogenetic diversity as a window into the evolutionary and biogeographic histories of present-day richness gradients for mammals. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2414-2425.	4.0	145
121	The influence of past and present climate on the biogeography of modern mammal diversity. Philosophical Transactions of the Royal Society B: Biological Sciences, 2011, 366, 2526-2535.	4.0	60
122	Extinction Risk and Diversification Are Linked in a Plant Biodiversity Hotspot. PLoS Biology, 2011, 9, e1000620.	5.6	112
123	Rarest of the rare: advances in combining evolutionary distinctiveness and scarcity to inform conservation at biogeographical scales. Diversity and Distributions, 2010, 16, 376-385.	4.1	191
124	Phylogenetic diversity metrics for ecological communities: integrating species richness, abundance and evolutionary history. Ecology Letters, 2010, 13, 96-105.	6.4	340
125	Niche conservatism as an emerging principle in ecology and conservation biology. Ecology Letters, 2010, 13, 1310-1324.	6.4	1,387
126	Phylogeny, niche conservatism and the latitudinal diversity gradient in mammals. Proceedings of the Royal Society B: Biological Sciences, 2010, 277, 2131-2138.	2.6	219

#	Article	IF	CITATIONS
127	Quaternary Climate Change and the Geographic Ranges of Mammals. American Naturalist, 2009, 174, 297-307.	2.1	107
128	Phylogenetic trees and the future of mammalian biodiversity. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11556-11563.	7.1	131
129	Phylogeny and geography predict pathogen community similarity in wild primates and humans. Proceedings of the Royal Society B: Biological Sciences, 2008, 275, 1695-1701.	2.6	254
130	Preserving the evolutionary potential of floras in biodiversity hotspots. Nature, 2007, 445, 757-760.	27.8	787
131	Grenyer et al. reply. Nature, 2007, 450, E20-E20.	27.8	3
132	Global distribution and conservation of rare and threatened vertebrates. Nature, 2006, 444, 93-96.	27.8	462
133	Environment, Area, and Diversification in the Speciesâ€Rich Flowering Plant Family Iridaceae. American Naturalist, 2005, 166, 418-425.	2.1	42
134	Environmental energy and evolutionary rates in flowering plants. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2195-2200.	2.6	194
135	Darwin's abominable mystery: Insights from a supertree of the angiosperms. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1904-1909.	7.1	547
136	Environmental causes for plant biodiversity gradients. Philosophical Transactions of the Royal Society B: Biological Sciences, 2004, 359, 1645-1656.	4.0	44
137	Predicting future speciation. , 2001, , 400-418.		9