
Weiguang Cui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407412/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The THREEHUNDRED project: The effect of baryon processes at galaxy cluster scale. EPJ Web of Conferences, 2022, 257, 00011.	0.3	2
2	Morphological analysis of SZ and X-ray maps of galaxy clusters with Zernike polynomials. EPJ Web of Conferences, 2022, 257, 00008.	0.3	1
3	Mass Estimation of Planck Galaxy Clusters using Deep Learning. EPJ Web of Conferences, 2022, 257, 00013.	0.3	4
4	The three hundred project: galaxy cluster mergers and their impact on the stellar component of brightest cluster galaxies. Monthly Notices of the Royal Astronomical Society, 2022, 511, 2897-2913.	4.4	9
5	Velocity dispersion vs cluster mass: A new scaling law with The Three Hundred clusters. EPJ Web of Conferences, 2022, 257, 00018.	0.3	5
6	The hydrostatic mass bias in The Three Hundred clusters. EPJ Web of Conferences, 2022, 257, 00020.	0.3	5
7	The Three Hundred–NIKA2 Sunyaev–Zeldovich Large Program twin samples: Synthetic clusters to support real observations. EPJ Web of Conferences, 2022, 257, 00036.	0.3	2
8	Cosmic filaments delay quenching inside clusters. Monthly Notices of the Royal Astronomical Society, 2022, 512, 926-944.	4.4	10
9	The Three Hundred project: dissecting the Fundamental Plane of galaxy clusters up to <i>z</i> Â= 1. Monthly Notices of the Royal Astronomical Society, 2022, 512, 1214-1233.	4.4	2
10	Galaxy velocity bias in cosmological simulations: towards per cent-level calibration. Monthly Notices of the Royal Astronomical Society, 2022, 510, 2980-2997.	4.4	12
11	Brightest cluster galaxies trace weak lensing mass bias and halo triaxiality in the three hundred project. Monthly Notices of the Royal Astronomical Society, 2022, 513, 2178-2193.	4.4	7
12	Shocks in the stacked Sunyaev-Zel'dovich profiles of clusters II: Measurements from SPT-SZ +Â <i>Planck</i> Compton- <i>y</i> map. Monthly Notices of the Royal Astronomical Society, 2022, 514, 1645-1663.	4.4	15
13	<scp>The Three Hundred</scp> project: The <scp>gizmo-simba</scp> run. Monthly Notices of the Royal Astronomical Society, 2022, 514, 977-996.	4.4	31
14	What to expect from dynamical modelling of cluster haloes – II. Investigating dynamical state indicators with Random Forest. Monthly Notices of the Royal Astronomical Society, 2022, 514, 5890-5904.	4.4	6
15	Groups and Protocluster Candidates in the CLAUDS and HSC-SSP Joint Deep Surveys. Astrophysical Journal, 2022, 933, 9.	4.5	9
16	A stochastic model to reproduce the star formation history of individual galaxies in hydrodynamic simulations. Monthly Notices of the Royal Astronomical Society, 2022, 515, 3249-3269.	4.4	3
17	<scp>The Three Hundred</scp> project: the gas disruption of infalling objects in cluster environments. Monthly Notices of the Royal Astronomical Society, 2021, 501, 5029-5041.	4.4	15
18	Exploring the hydrostatic mass bias in MUSIC clusters: application to the NIKA2 mock sample. Monthly Notices of the Royal Astronomical Society, 2021, 502, 5115-5133.	4.4	41

#	Article	IF	CITATIONS
19	Cosmic filaments in galaxy cluster outskirts: quantifying finding filaments in redshift space. Monthly Notices of the Royal Astronomical Society, 2021, 503, 2065-2076.	4.4	18
20	The Three Hundred project: dynamical state of galaxy clusters and morphology from multiwavelength synthetic maps. Monthly Notices of the Royal Astronomical Society, 2021, 504, 5383-5400.	4.4	36
21	Hybrid analytic and machine-learned baryonic property insertion into galactic dark matter haloes. Monthly Notices of the Royal Astronomical Society, 2021, 504, 4024-4038.	4.4	10
22	CLUMP-3D: the lack of non-thermal motions in galaxy cluster cores. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4338-4344.	4.4	11
23	Does concentration drive the scatter in the stellar-to-halo mass relation of galaxy clusters?. Monthly Notices of the Royal Astronomical Society, 2021, 505, 5117-5128.	4.4	20
24	What to expect from dynamical modelling of cluster haloes – I. The information content of different dynamical tracers. Monthly Notices of the Royal Astronomical Society, 2021, 505, 3907-3922.	4.4	9
25	The origin of galaxy colour bimodality in the scatter of the stellar-to-halo mass relation. Nature Astronomy, 2021, 5, 1069-1076.	10.1	33
26	The thermalization of massive galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 507, 5214-5223.	4.4	9
27	The Three Hundred Project: The stellar angular momentum evolution of cluster galaxies. Astronomy and Astrophysics, 2021, 652, A10.	5.1	3
28	Shocks in the stacked Sunyaev–Zel'dovich profiles of clusters – I. Analysis with the Three Hundred simulations. Monthly Notices of the Royal Astronomical Society, 2021, 508, 1777-1787.	4.4	19
29	<scp>the threehundred</scp> : the structure and properties of cosmic filaments in the outskirts of galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2021, 502, 714-727.	4.4	34
30	The Three Hundred project: quest of clusters of galaxies morphology and dynamical state through Zernike polynomials. Monthly Notices of the Royal Astronomical Society, 2021, 503, 6155-6169.	4.4	22
31	An inventory of galaxies in cosmic filaments feeding galaxy clusters: galaxy groups, backsplash galaxies, and pristine galaxies. Monthly Notices of the Royal Astronomical Society, 2021, 510, 581-592.	4.4	27
32	Mapping and characterization of cosmic filaments in galaxy cluster outskirts: strategies and forecasts for observations from simulations. Monthly Notices of the Royal Astronomical Society, 2020, 494, 5473-5491.	4.4	41
33	Protoclusters at ? = 5.7: a view from the MultiDark galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 497, 5220-5228.	4.4	2
34	The Three Hundred project: the stellar and gas profiles. Monthly Notices of the Royal Astronomical Society, 2020, 495, 2930-2948.	4.4	24
35	Do model emission line galaxies live in filaments at z â^¼ 1?. Monthly Notices of the Royal Astronomical Society, 2020, 498, 1852-1870.	4.4	27
36	The specific star formation rate function at different mass scales and quenching: a comparison between cosmological models and SDSS. Monthly Notices of the Royal Astronomical Society, 2020, 500, 2036-2048.	4.4	19

#	Article	IF	CITATIONS
37	The Three Hundred project: shapes and radial alignment of satellite, infalling, and backsplash galaxies. Monthly Notices of the Royal Astronomical Society, 2020, 495, 3002-3013.	4.4	29
38	TheThreeHundred project: backsplash galaxies in simulations of clusters. Monthly Notices of the Royal Astronomical Society, 2020, 492, 6074-6085.	4.4	57
39	The Three Hundred Project: Correcting for the hydrostatic-equilibrium mass bias in X-ray and SZ surveys. Astronomy and Astrophysics, 2020, 634, A113.	5.1	46
40	Constraining the cross-section of dark matter with giant radial arcs in galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2020, 500, 247-258.	4.4	15
41	Rotation in galaxy clusters from MUSIC simulations with the kinetic Sunyaev–Zel'dovich effect. Journal of Physics: Conference Series, 2019, 1226, 012003.	0.4	1
42	A semi-analytical perspective on massive galaxies at z â^¼ 0.55. Monthly Notices of the Royal Astronomical Society, 2019, 486, 1316-1331.	4.4	4
43	<scp>TheThreeHundred</scp> Project: ram pressure and gas content of haloes and subhaloes in the phase-space plane. Monthly Notices of the Royal Astronomical Society, 2019, 484, 3968-3983.	4.4	44
44	The Three Hundred Project: The evolution of galaxy cluster density profiles. Monthly Notices of the Royal Astronomical Society, 2019, 483, 3390-3403.	4.4	40
45	The minimum and maximum gravitational-wave background from supermassive binary black holes. Monthly Notices of the Royal Astronomical Society, 2019, 482, 2588-2596.	4.4	18
46	Full-sky Ray-tracing Simulation of Weak Lensing Using ELUCID Simulations: Exploring Galaxy Intrinsic Alignment and Cosmic Shear Correlations. Astrophysical Journal, 2018, 853, 25.	4.5	17
47	ELUCID. IV. Galaxy Quenching and its Relation to Halo Mass, Environment, and Assembly Bias. Astrophysical Journal, 2018, 852, 31.	4.5	52
48	The large-scale environment from cosmological simulations – I. The baryonic cosmic web. Monthly Notices of the Royal Astronomical Society, 2018, 473, 68-79.	4.4	28
49	The Three Hundred Project: The Influence of Environment on Simulated Galaxy Properties. Astrophysical Journal, 2018, 868, 130.	4.5	32
50	Cosmic CARNage I: on the calibration of galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2018, 475, 2936-2954.	4.4	23
51	An Investigation of Intracluster Light Evolution Using Cosmological Hydrodynamical Simulations. Astrophysical Journal, 2018, 859, 85.	4.5	25
52	ELUCID. V. Lighting Dark Matter Halos with Galaxies. Astrophysical Journal, 2018, 860, 30.	4.5	17
53	The Three Hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Monthly Notices of the Royal Astronomical Society, 2018, 480, 2898-2915.	4.4	131
54	Kinetic Sunyaev–Zel'dovich effect in rotating galaxy clusters from MUSIC simulations. Monthly Notices of the Royal Astronomical Society, 2018, 479, 4028-4040.	4.4	27

#	Article	IF	CITATIONS
55	ELUCID—Exploring the Local Universe with the reConstructed Initial Density Field. II. Reconstruction Diagnostics, Applied to Numerical Halo Catalogs. Astrophysical Journal, 2017, 841, 55.	4.5	14
56	nIFTy galaxy cluster simulations – V. Investigation of the cluster infall region. Monthly Notices of the Royal Astronomical Society, 2017, 464, 2027-2038.	4.4	16
57	nIFTy cosmology: the clustering consistency of galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2017, 469, 749-762.	4.4	24
58	On the dynamical state of galaxy clusters: insights from cosmological simulations – II Monthly Notices of the Royal Astronomical Society, 2017, 464, 2502-2510.	4.4	40
59	nIFTy galaxy cluster simulations – II. Radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 459, 2973-2991.	4.4	45
60	nIFTY galaxy cluster simulations – III. The similarity and diversity of galaxies and subhaloes. Monthly Notices of the Royal Astronomical Society, 2016, 458, 1096-1116.	4.4	32
61	nIFTy galaxy cluster simulations – IV. Quantifying the influence of baryons on halo properties. Monthly Notices of the Royal Astronomical Society, 2016, 458, 4052-4073.	4.4	39
62	How does our choice of observable influence our estimation of the centre of a galaxy cluster? Insights from cosmological simulations. Monthly Notices of the Royal Astronomical Society, 2016, 456, 2566-2575.	4.4	38
63	nIFTy galaxy cluster simulations – I. Dark matter and non-radiative models. Monthly Notices of the Royal Astronomical Society, 2016, 457, 4063-4080.	4.4	63
64	nIFTy cosmology: comparison of galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2015, 451, 4029-4059.	4.4	55
65	THE SOURCE-LENS CLUSTERING EFFECT IN THE CONTEXT OF LENSING TOMOGRAPHY AND ITS SELF-CALIBRATION. Astrophysical Journal, 2015, 803, 46.	4.5	5
66	Intracluster light properties in the CLASH-VLT cluster MACS J1206.2-0847. Astronomy and Astrophysics, 2014, 565, A126.	5.1	63
67	Characterizing diffused stellar light in simulated galaxy clusters. Monthly Notices of the Royal Astronomical Society, 2014, 437, 816-830.	4.4	81
68	The effect of active galactic nuclei feedback on the halo mass function. Monthly Notices of the Royal Astronomical Society, 2014, 441, 1769-1782.	4.4	77
69	Nonlinearities in modified gravity cosmology. II. Impacts of modified gravity on the halo properties. Physical Review D, 2013, 87, .	4.7	7
70	Brightest cluster galaxies in cosmological simulations: achievements and limitations of active galactic nuclei feedback models. Monthly Notices of the Royal Astronomical Society, 2013, 436, 1750-1764.	4.4	62
71	Gaussianizing the non-Gaussian lensing convergence field II. The applicability to noisy data. Physical Review D, 2012, 86, .	4.7	8
72	The effects of baryons on the halo mass function. Monthly Notices of the Royal Astronomical Society, 2012, 423, 2279-2287.	4.4	91

#	Article	IF	CITATIONS
73	The halo mass function in interacting dark energy models. Monthly Notices of the Royal Astronomical Society, 2012, 424, 993-1005.	4.4	37
74	Properties of fossil groups in cosmological simulations and galaxy formation models. Monthly Notices of the Royal Astronomical Society, 2011, 416, 2997-3008.	4.4	33
75	Gaussianizing the non-Gaussian lensing convergence field: The performance of the Gaussianization. Physical Review D, 2011, 84, .	4.7	22
76	Nonlinearities in modified gravity cosmology: Signatures of modified gravity in the nonlinear matter power spectrum. Physical Review D, 2010, 81, .	4.7	16
77	An Ideal Mass Assignment Scheme for Measuring the Power Spectrum with Fast Fourier Transforms. Astrophysical Journal, 2008, 687, 738-744.	4.5	40
78	Porous Ceramics. , 0, , .		6
79	The Impact of Baryons on the Large-Scale Structure of the Universe. , 0, , .		4
80	nIFTy galaxy cluster simulations VI: the dynamical imprint of substructure on gaseous cluster outskirts Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	8