Chibundu Ezekiel

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407313/publications.pdf

Version: 2024-02-01

82 papers 2,969 citations

30 h-index 51 g-index

84 all docs 84 docs citations

84 times ranked 2509 citing authors

#	Article	IF	Citations
1	Taxonomy of (i) Aspergillus (i) section (i) Flavi (i) and their production of aflatoxins, ochratoxins and other mycotoxins. Studies in Mycology, 2019, 93, 1-63.	7.2	351
2	Fusarium: more than a node or a foot-shaped basal cell. Studies in Mycology, 2021, 98, 100116.	7.2	134
3	Mycotoxin exposure in rural residents in northern Nigeria: A pilot study using multi-urinary biomarkers. Environment International, 2014, 66, 138-145.	10.0	129
4	Mycotoxin contamination of foods in Southern Africa: A 10-year review (2007–2016). Critical Reviews in Food Science and Nutrition, 2019, 59, 43-58.	10.3	119
5	Advanced LC–MS-based methods to study the co-occurrence and metabolization of multiple mycotoxins in cereals and cereal-based food. Analytical and Bioanalytical Chemistry, 2018, 410, 801-825.	3.7	113
6	Ultra-sensitive, stable isotope assisted quantification of multiple urinary mycotoxin exposure biomarkers. Analytica Chimica Acta, 2018, 1019, 84-92.	5.4	101
7	Fungal and bacterial metabolites of stored maize (Zea mays, L.) from five agro-ecological zones of Nigeria. Mycotoxin Research, 2014, 30, 89-102.	2.3	85
8	Mycotoxin risk assessment for consumers of groundnut in domestic markets in Nigeria. International Journal of Food Microbiology, 2017, 251, 24-32.	4.7	78
9	Biomonitoring of Mycotoxins in Human Breast Milk: Current State and Future Perspectives. Chemical Research in Toxicology, 2016, 29, 1087-1097.	3.3	77
10	Natural occurrence of mycotoxins in peanut cake from Nigeria. Food Control, 2012, 27, 338-342.	5 . 5	75
11	Incidence and consumer awareness of toxigenic Aspergillus section Flavi and aflatoxin B1 in peanut cake from Nigeria. Food Control, 2013, 30, 596-601.	5.5	72
12	Assessing the mycotoxicological risk from consumption of complementary foods by infants and young children in Nigeria. Food and Chemical Toxicology, 2018, 121, 37-50.	3.6	72
13	Bacterial Diversity and Mycotoxin Reduction During Maize Fermentation (Steeping) for Ogi Production. Frontiers in Microbiology, 2015, 6, 1402.	3.5	65
14	Monitoring Early Life Mycotoxin Exposures via LC-MS/MS Breast Milk Analysis. Analytical Chemistry, 2018, 90, 14569-14577.	6.5	63
15	Mycotoxin co-exposures in infants and young children consuming household- and industrially-processed complementary foods in Nigeria and risk management advice. Food Control, 2019, 98, 312-322.	5.5	53
16	Mycotoxins in poultry feed and feed ingredients in Nigeria. Mycotoxin Research, 2019, 35, 149-155.	2.3	49
17	Risk Assessment of Mycotoxins in Stored Maize Grains Consumed by Infants and Young Children in Nigeria. Children, 2017, 4, 58.	1.5	47
18	Occurrence and Human-Health Impacts of Mycotoxins in Somalia. Journal of Agricultural and Food Chemistry, 2019, 67, 2052-2060.	5.2	47

#	Article	IF	Citations
19	Microbiological safety of readyâ€toâ€eat foods in low―and middleâ€income countries: A comprehensive 10â€year (2009 to 2018) review. Comprehensive Reviews in Food Science and Food Safety, 2020, 19, 703-732.	11.7	47
20	Fate of mycotoxins in two popular traditional cereal-based beverages (kunu-zaki and pito) from rural Nigeria. LWT - Food Science and Technology, 2015, 60, 137-141.	5.2	46
21	High-Throughput Sequence Analyses of Bacterial Communities and Multi-Mycotoxin Profiling During Processing of Different Formulations of Kunu, a Traditional Fermented Beverage. Frontiers in Microbiology, 2018, 9, 3282.	3.5	45
22	Fungal and bacterial metabolites in commercial poultry feed from Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2012, 29, 1288-1299.	2.3	43
23	Traditionally Processed Beverages in Africa: A Review of the Mycotoxin Occurrence Patterns and Exposure Assessment. Comprehensive Reviews in Food Science and Food Safety, 2018, 17, 334-351.	11.7	43
24	Mycotoxin patterns in ear rot infected maize: A comprehensive case study in Nigeria. Food Control, 2017, 73, 1159-1168.	5 . 5	40
25	Fungal and mycotoxin assessment of dried edible mushroom in Nigeria. International Journal of Food Microbiology, 2013, 162, 231-236.	4.7	38
26	Uncommon toxic microbial metabolite patterns in traditionally home-processed maize dish (fufu) consumed in rural Cameroon. Food and Chemical Toxicology, 2017, 107, 10-19.	3.6	38
27	Traditional processing impacts mycotoxin levels and nutritional value of ogi – A maize-based complementary food. Food Control, 2018, 86, 224-233.	5 . 5	36
28	Multi-microbial metabolites in fonio millet (acha) and sesame seeds in Plateau State, Nigeria. European Food Research and Technology, 2012, 235, 285-293.	3.3	35
29	Aflatoxin in Chili Peppers in Nigeria: Extent of Contamination and Control Using Atoxigenic Aspergillus flavus Genotypes as Biocontrol Agents. Toxins, 2019, 11, 429.	3.4	34
30	Mycotoxins and fungal metabolites in groundnut- and maize-based snacks from Nigeria. Food Additives and Contaminants: Part B Surveillance, 2013, 6, 294-300.	2.8	31
31	Assessment of aflatoxigenic <i>Aspergillus</i> and other fungi in millet and sesame from Plateau State, Nigeria. Mycology, 2014, 5, 16-22.	4.4	31
32	Fungal and bacterial metabolites associated with natural contamination of locally processed rice (<i>Oryza sativa</i> L) in Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2015, 32, 950-959.	2.3	31
33	Mycotoxins in uncooked and plate-ready household food from rural northern Nigeria. Food and Chemical Toxicology, 2019, 128, 171-179.	3.6	31
34	Exposure to Mycotoxin-Mixtures via Breast Milk: An Ultra-Sensitive LC-MS/MS Biomonitoring Approach. Frontiers in Chemistry, 2020, 8, 423.	3.6	31
35	Distribution of mycotoxins and risk assessment of maize consumers in five agro-ecological zones of Nigeria. European Food Research and Technology, 2014, 239, 287-296.	3.3	26
36	Distribution of aflatoxigenic Aspergillus section Flavi in commercial poultry feed in Nigeria. International Journal of Food Microbiology, 2014, 189, 18-25.	4.7	25

#	Article	IF	CITATIONS
37	Fullerol C60(OH)24 nanoparticles modulate aflatoxin B1 biosynthesis in Aspergillus flavus. Scientific Reports, 2018, 8, 12855.	3.3	25
38	Estimating the risk of aflatoxin-induced liver cancer in Tanzania based on biomarker data. PLoS ONE, 2021, 16, e0247281.	2.5	24
39	Dietary Risk Assessment and Consumer Awareness of Mycotoxins among Household Consumers of Cereals, Nuts and Legumes in North-Central Nigeria. Toxins, 2021, 13, 635.	3.4	24
40	Assessment of multiple mycotoxins in raw milk of three different animal species in Nigeria. Food Control, 2022, 131, 108258.	5 . 5	24
41	Mycotoxin exposure biomonitoring in breastfed and non-exclusively breastfed Nigerian children. Environment International, 2022, 158, 106996.	10.0	24
42	Bacterial species and mycotoxin contamination associated with locust bean, melon and their fermented products in south-western Nigeria. International Journal of Food Microbiology, 2017, 258, 73-80.	4.7	23
43	Contamination of Groundnut in Southâ€Western Nigeria by Aflatoxigenic Fungi and Aflatoxins in Relation to Processing. Journal of Phytopathology, 2015, 163, 279-286.	1.0	22
44	Mould and mycotoxin exposure assessment of melon and bush mango seeds, two common soup thickeners consumed in Nigeria. International Journal of Food Microbiology, 2016, 237, 83-91.	4.7	22
45	Fungal Diversity and Mycotoxins in Low Moisture Content Ready-To-Eat Foods in Nigeria. Frontiers in Microbiology, 2020, 11, 615.	3.5	22
46	Mycotoxin-mixture assessment in mother-infant pairs in Nigeria: From mothers' meal to infants' urine. Chemosphere, 2022, 287, 132226.	8.2	22
47	Moulds and their secondary metabolites associated with the fermentation and storage of two cocoa bean hybrids in Nigeria. International Journal of Food Microbiology, 2020, 316, 108490.	4.7	21
48	A mini-survey of moulds and mycotoxins in locally grown and imported wheat grains in Nigeria. Mycotoxin Research, 2017, 33, 59-64.	2.3	20
49	Diversity and toxigenicity of fungi and description of Fusarium madaense sp. nov. from cereals, legumes and soils in north-central Nigeria. MycoKeys, 2020, 67, 95-124.	1.9	20
50	A survey of mycotoxins in random street-vended snacks from Lagos, Nigeria, using QuEChERS-HPLC-MS/MS. Food Control, 2013, 32, 673-677.	5.5	18
51	Urinary aflatoxin exposure monitoring in rural and semi-urban populations in Ogun state, Nigeria. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1565-1572.	2.3	18
52	Antimicrobial Activity of the Methanolic and Crude Alkaloid Extracts of Acalypha wilkesiana cv. macafeeana Copper Leaf. Research Journal of Microbiology, 2009, 4, 269-277.	0.2	18
53	Combinatory effects of cereulide and deoxynivalenol on in vitro cell viability and inflammation of human Caco-2 cells. Archives of Toxicology, 2020, 94, 833-844.	4.2	17
54	Impact of fullerol C60(OH)24 nanoparticles on the production of emerging toxins by Aspergillus flavus. Scientific Reports, 2020, 10, 725.	3.3	17

#	Article	IF	Citations
55	A review of microbes and chemical contaminants in dairy products in subâ€Saharan Africa. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 1188-1220.	11.7	16
56	Fullerol C60(OH)24 Nanoparticles Affect Secondary Metabolite Profile of Important Foodborne Mycotoxigenic Fungi In Vitro. Toxins, 2020, 12, 213.	3.4	13
57	Present status and future perspectives of grain drying and storage practices as a means to reduce mycotoxin exposure in Nigeria. Food Control, 2021, 126, 108074.	5.5	13
58	Early-life chemical exposome and gut microbiome development: African research perspectives within a global environmental health context. Trends in Microbiology, 2022, 30, 1084-1100.	7.7	13
59	Fungi and mycotoxins in cowpea (<i>Vigna unguiculata</i> L) on Nigerian markets. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 52-58.	2.8	12
60	Metataxonomic analysis of bacterial communities and mycotoxin reduction during processing of three millet varieties into ogi, a fermented cereal beverage. Food Research International, 2021, 143, 110241.	6.2	12
61	Aspergillus flavus NRRL 3251 Growth, Oxidative Status, and Aflatoxins Production Ability In Vitro under Different Illumination Regimes. Toxins, 2018, 10, 528.	3.4	11
62	Phylogenetic analyses of bacteria associated with the processing of <i>iru</i> and <i>ogiri</i> condiments. Letters in Applied Microbiology, 2018, 67, 354-362.	2.2	11
63	Trace analysis of emerging and regulated mycotoxins in infant stool by LC-MS/MS. Analytical and Bioanalytical Chemistry, 2022, 414, 7503-7516.	3.7	11
64	Distribution of fungi and their toxic metabolites in melon and sesame seeds marketed in two major producing states in Nigeria. Mycotoxin Research, 2020, 36, 361-369.	2.3	10
65	Aflatoxin contamination of maize vended in Ondo state, Nigeria, and health risk assessments. Croatian Journal of Food Science and Technology, 2020, 12, 123-129.	0.3	10
66	Survey of roasted street-vended nuts in Sierra Leone for toxic metabolites of fungal origin. Food Additives and Contaminants - Part A Chemistry, Analysis, Control, Exposure and Risk Assessment, 2018, 35, 1573-1580.	2.3	9
67	Fungal Diversity and Aflatoxins in Maize and Rice Grains and Cassava-Based Flour (Pupuru) from Ondo State, Nigeria. Journal of Fungi (Basel, Switzerland), 2021, 7, 635.	3.5	9
68	Bacteriological assessment of tropical retail fresh-cut, ready-to-eat fruits in south-western Nigeria. Scientific African, 2020, 9, e00505.	1.5	8
69	Bacterial contaminants and their antibiotic susceptibility patterns in readyâ€toâ€eat foods vended in Ogun state, Nigeria. Letters in Applied Microbiology, 2021, 72, 187-195.	2.2	8
70	Fungal isolates and metabolites in locally processed rice from five agro-ecological zones of Nigeria. Food Additives and Contaminants: Part B Surveillance, 2016, 9, 281-289.	2.8	6
71	Phenotypic differentiation of species from Aspergillus section Flavi on neutral red desiccated coconut agar. World Mycotoxin Journal, 2014, 7, 335-344.	1.4	6
72	Anti-mutagenic and Anti-genotoxic Effect of Ethanolic Extract of Neem on Dietary-aflatoxin Induced Genotoxicity in Mice. Journal of Biological Sciences, 2011, 11, 307-313.	0.3	5

#	Article	IF	CITATIONS
73	Fungal and plant metabolites in industrially-processed fruit juices in Nigeria. Food Additives and Contaminants: Part B Surveillance, 2020, 13, 155-161.	2.8	4
74	Agricultural and nutritional education interventions for reducing aflatoxin exposure to improve infant and child growth in low- and middle-income countries. The Cochrane Library, 2020, 2020, CD013376.	2.8	4
75	Food safety in the face of climate change. Croatian Journal of Food Science and Technology, 2020, 12, 280-286.	0.3	4
76	The impact of chemotherapy, education and community water supply on schistosomiasis control in a Southwestern Nigerian village. Infection, Disease and Health, 2018, 23, 121-123.	1.1	2
77	A pilot biomonitoring study of bladder tumor antigen (BTA) in aflatoxin exposed Nigerian villagers. African Journal of Urology, 2018, 24, 152-156.	0.4	2
78	Anticandidal and Antistaphylococcal Activity of Soap Fortified with Ocimum gratissimum Extract. Journal of Applied Sciences, 2010, 10, 2121-2126.	0.3	2
79	Agricultural and nutritional educational interventions for reducing aflatoxin exposure to improve infant and child growth in low- and middle-income countries. The Cochrane Library, 0, , .	2.8	1
80	Occurrence, mycotoxins and toxicity of Fusarium species from Abelmoschus esculentus and Sesamum indicum seeds. Mycotoxins, 2013, 63, 27-38.	0.2	0
81	Analysis of Bacterial Communities of Three Cassavaâ€Based Traditionally Fermented Nigerian Foods () Tj ETQq1	1 0,78431 2.2	4 rgBT /Over
82	Draft Genome Sequences of Multidrug-Resistant Shiga Toxin-Producing Escherichia coli O116:H25 Strains from Ready-to-Eat Foods Sold in Lagos, Nigeria. Microbiology Resource Announcements, 0, , .	0.6	0