Jane Memmott

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3407293/publications.pdf Version: 2024-02-01

IANE MEMMOTT

#	Article	IF	CITATIONS
1	Global warming and the disruption of plant?pollinator interactions. Ecology Letters, 2007, 10, 710-717.	6.4	991
2	Tolerance of pollination networks to species extinctions. Proceedings of the Royal Society B: Biological Sciences, 2004, 271, 2605-2611.	2.6	947
3	Parasites in food webs: the ultimate missing links. Ecology Letters, 2008, 11, 533-546.	6.4	716
4	CONSUMER–RESOURCE BODY-SIZE RELATIONSHIPS IN NATURAL FOOD WEBS. Ecology, 2006, 87, 2411-2417.	3.2	568
5	The Robustness and Restoration of a Network of Ecological Networks. Science, 2012, 335, 973-977.	12.6	489
6	The robustness of pollination networks to the loss of species and interactions: a quantitative approach incorporating pollinator behaviour. Ecology Letters, 2010, 13, 442-452.	6.4	396
7	Where is the UK's pollinator biodiversity? The importance of urban areas for flower-visiting insects. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142849.	2.6	393
8	The impact of an alien plant on a native plant–pollinator network: an experimental approach. Ecology Letters, 2007, 10, 539-550.	6.4	367
9	The ecological and evolutionary implications of merging different types of networks. Ecology Letters, 2011, 14, 1170-1181.	6.4	332
10	Historical nectar assessment reveals the fall and rise of floral resources in Britain. Nature, 2016, 530, 85-88.	27.8	320
11	A systems approach reveals urban pollinator hotspots and conservation opportunities. Nature Ecology and Evolution, 2019, 3, 363-373.	7.8	293
12	A global synthesis of the effects of diversified farming systems on arthropod diversity within fields and across agricultural landscapes. Global Change Biology, 2017, 23, 4946-4957.	9.5	259
13	When parasites become prey: ecological and epidemiological significance of eating parasites. Trends in Ecology and Evolution, 2010, 25, 362-371.	8.7	253
14	Food for Pollinators: Quantifying the Nectar and Pollen Resources of Urban Flower Meadows. PLoS ONE, 2016, 11, e0158117.	2.5	233
15	Emerging perspectives in the restoration of biodiversity-based ecosystem services. Trends in Ecology and Evolution, 2012, 27, 666-672.	8.7	219
16	Do differences in food web structure between organic and conventional farms affect the ecosystem service of pest control?. Ecology Letters, 2009, 12, 229-238.	6.4	184
17	The forgotten flies: the importance of non-syrphid Diptera as pollinators. Proceedings of the Royal Society B: Biological Sciences, 2015, 282, 20142934.	2.6	173
18	The potential for indirect effects between coâ€flowering plants via shared pollinators depends on resource abundance, accessibility and relatedness. Ecology Letters, 2014, 17, 1389-1399.	6.4	172

JANE MEMMOTT

#	Article	IF	CITATIONS
19	Phenology of farmland floral resources reveals seasonal gaps in nectar availability for bumblebees. Journal of Applied Ecology, 2019, 56, 1585-1596.	4.0	160
20	Structure of a diverse tropical forest insect–parasitoid community. Journal of Animal Ecology, 2002, 71, 855-873.	2.8	147
21	The invertebrate fauna on broom, Cytisus scoparius,in two native and two exotic habitats. Acta Oecologica, 2000, 21, 213-222.	1.1	135
22	Understanding and planning ecological restoration of plant–pollinator networks. Ecology Letters, 2012, 15, 319-328.	6.4	133
23	Sampling method influences the structure of plant–pollinator networks. Oikos, 2011, 120, 822-831.	2.7	131
24	The Restoration of Plant-Pollinator Interactions in Hay Meadows. Restoration Ecology, 2005, 13, 265-274.	2.9	120
25	The robustness of a network of ecological networks to habitat loss. Ecology Letters, 2013, 16, 844-852.	6.4	110
26	BODY SIZES OF CONSUMERS AND THEIR RESOURCES. Ecology, 2005, 86, 2545-2545.	3.2	105
27	Apparent competition can compromise the safety of highly specific biocontrol agents. Ecology Letters, 2008, 11, 690-700.	6.4	97
28	Modest enhancements to conventional grassland diversity improve the provision of pollination services. Journal of Applied Ecology, 2016, 53, 906-915.	4.0	96
29	Effects of Alien Plants on Insect Abundance and Biomass: a Foodâ€Web Approach. Conservation Biology, 2009, 23, 410-419.	4.7	87
30	How to monitor ecological communities cost-efficiently: The example of plant–pollinator networks. Biological Conservation, 2010, 143, 2092-2101.	4.1	87
31	The â€~night shift': nocturnal pollen-transport networks in a boreal pine forest. Ecological Entomology, 2011, 36, 25-35.	2.2	76
32	Community structure of pollination webs of Mauritian heathland habitats. Perspectives in Plant Ecology, Evolution and Systematics, 2009, 11, 241-254.	2.7	73
33	The role of avian â€~seed predators' as seed dispersers. Ibis, 2011, 153, 199-203.	1.9	72
34	Evaluation of restoration effectiveness: community response to the removal of alien plants. Ecological Applications, 2010, 20, 1191-1203.	3.8	70
35	Overplaying the role of honey bees as pollinators: a comment on Aebi and Neumann (2011). Trends in Ecology and Evolution, 2012, 27, 141-142.	8.7	67
36	The restoration of tropical seed dispersal networks. Restoration Ecology, 2015, 23, 852-860.	2.9	65

JANE MEMMOTT

#	Article	IF	CITATIONS
37	Parasitoid control of aphids in organic and conventional farming systems. Agriculture, Ecosystems and Environment, 2009, 133, 14-18.	5.3	63
38	Identifying key knowledge needs for evidenceâ€based conservation of wild insect pollinators: a collaborative crossâ€sectoral exercise. Insect Conservation and Diversity, 2013, 6, 435-446.	3.0	61
39	Daily temporal structure in African savanna flower visitation networks and consequences for network sampling. Ecology, 2011, 92, 687-698.	3.2	51
40	High Resilience of Seed Dispersal Webs Highlighted by the Experimental Removal of the Dominant Disperser. Current Biology, 2016, 26, 910-915.	3.9	49
41	Integration of exotic seeds into an Azorean seed dispersal network. Biological Invasions, 2013, 15, 1143-1154.	2.4	48
42	Diet breadth influences how the impact of invasive plants is propagated through food webs. Ecology, 2010, 91, 1063-1074.	3.2	47
43	Seeds in farmland food-webs: Resource importance, distribution and the impacts of farm management. Biological Conservation, 2011, 144, 2941-2950.	4.1	46
44	Parasitoid diversity reduces the variability in pest control services across time on farms. Proceedings of the Royal Society B: Biological Sciences, 2011, 278, 3387-3394.	2.6	46
45	Species roles in plant–pollinator communities are conserved across native and alien ranges. Diversity and Distributions, 2016, 22, 841-852.	4.1	46
46	The Impact of the Invasive Alien Plant, Impatiens glandulifera, on Pollen Transfer Networks. PLoS ONE, 2015, 10, e0143532.	2.5	45
47	econullnetr: An <scp>r</scp> package using null models to analyse the structure of ecological networks and identify resource selection. Methods in Ecology and Evolution, 2018, 9, 728-733.	5.2	44
48	Quantifying nectar production by flowering plants in urban and rural landscapes. Journal of Ecology, 2021, 109, 1747-1757.	4.0	44
49	The relationship between the abundances of bumblebees and honeybees in a native habitat. Ecological Entomology, 2005, 30, 47-57.	2.2	42
50	Reshaping our understanding of species' roles in landscapeâ€scale networks. Ecology Letters, 2019, 22, 1367-1377.	6.4	37
51	Urban gulls adapt foraging schedule to humanâ€activity patterns. Ibis, 2021, 163, 274-282.	1.9	36
52	The restoration of parasites, parasitoids, and pathogens to heathland communities. Ecology, 2009, 90, 1840-1851.	3.2	35
53	Patterns of introduced species interactions affect multiple aspects of network structure in plant–pollinator communities. Ecology, 2014, 95, 2953-2963.	3.2	34
54	Putting applied ecology into practice. Journal of Applied Ecology, 2010, 47, 1-4.	4.0	31

JANE MEMMOTT

#	Article	IF	CITATIONS
55	Forest proximity and lowland mosaic increase robustness of tropical pollination networks in mixed fruit orchards. Landscape and Urban Planning, 2019, 192, 103646.	7.5	24
56	A method for the objective selection of landscapeâ€scale study regions and sites at the national level. Methods in Ecology and Evolution, 2017, 8, 1468-1476.	5.2	23
57	Seasonality of a tropical leaf-mining moth: leaf availability versus enemy-free space. Ecological Entomology, 2003, 28, 687-693.	2.2	22
58	Plant species roles in pollination networks: an experimental approach. Oikos, 2019, 128, 1446-1457.	2.7	22
59	Reliably predicting pollinator abundance: Challenges of calibrating processâ€based ecological models. Methods in Ecology and Evolution, 2020, 11, 1673-1689.	5.2	22
60	Bumblebee colony density on farmland is influenced by lateâ€summer nectar supply and garden cover. Journal of Applied Ecology, 2021, 58, 1006-1016.	4.0	20
61	Sandfly distribution and abundance in a tropical rain forest. Medical and Veterinary Entomology, 1991, 5, 403-411.	1.5	19
62	The impact of farm management on species-specific leaf area index (LAI): Farm-scale data and predictive models. Agriculture, Ecosystems and Environment, 2010, 135, 279-287.	5.3	16
63	Patterns of sandfly distribution in tropical forest: a causal hypothesis. Medical and Veterinary Entomology, 1992, 6, 188-194.	1.5	15
64	Ecological metaâ€networks integrate spatial and temporal dynamics of plant–bumble bee interactions. Oikos, 2014, 123, 714-720.	2.7	14
65	Does agri-environment scheme participation in England increase pollinator populations and crop pollination services?. Agriculture, Ecosystems and Environment, 2022, 325, 107755.	5.3	14
66	A comparison of clearfelling and gradual thinning of plantations for the restoration of insect herbivores and woodland plants. Journal of Applied Ecology, 2015, 52, 1538-1546.	4.0	13
67	Establishment of <i>Arytainilla spartiophila</i> Förster (Hemiptera: Psyllidae), a new biological control agent for broom, <i>Cytisus scoparius</i> , in New Zealand. New Zealand Entomologist, 2007, 30, 53-62.	0.3	11
68	Interaction generalisation and demographic feedbacks drive the resilience of plant–insect networks to extinctions. Journal of Animal Ecology, 2021, 90, 2109-2121.	2.8	7
69	Corridor quality affects net movement, size of dispersers, and population growth in experimental microcosms. Oecologia, 2021, 195, 547-556.	2.0	5
70	The impact of a native dominant plant, <i>Euphorbia jolkini><i>ii</i>, on plant–flower visitor networks and pollen deposition on stigmas of coâ€flowering species in subalpine meadows of Shangri‣a, SW China. Journal of Ecology, 2021, 109, 2107-2120.</i>	4.0	5
71	Differential effects of fertilisers on pollination and parasitoid interaction networks. Journal of Animal Ecology, 2021, 90, 404-414.	2.8	4
72	Landscape-scale drivers of pollinator communities may depend on land-use configuration. Philosophical Transactions of the Royal Society B: Biological Sciences, 2022, 377, 20210172.	4.0	3

#	Article	IF	CITATIONS
73	Sandfly stratification on tree buttresses in a Costa Rican tropical rainforest. Journal of Tropical Ecology, 1994, 10, 87-101.	1.1	2
74	Landscape configuration affects probability of apex predator presence and community structure in experimental metacommunities. Oecologia, 2022, 199, 193-204.	2.0	2
75	La Selva: Ecology and Natural History of a Neotropical Rain Forest. Journal of Animal Ecology, 1995, 64, 147.	2.8	0