Michael Brand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340538/publications.pdf

Version: 2024-02-01

155 papers 12,270 citations

25034 57 h-index 29157 104 g-index

171 all docs

171 docs citations

times ranked

171

10497 citing authors

#	Article	IF	Citations
1	Wnt \hat{I}^2 -catenin signaling acts cell-autonomously to promote cardiomyocyte regeneration in the zebrafish heart. Developmental Biology, 2022, 481, 226-237.	2.0	16
2	Cerebellar Development and Neurogenesis in Zebrafish., 2022,, 1623-1646.		0
3	Beam pulse structure and dose rate as determinants for the flash effect observed in zebrafish embryo. Radiotherapy and Oncology, 2022, 173, 49-54.	0.6	26
4	Cre-Controlled CRISPR mutagenesis provides fast and easy conditional gene inactivation in zebrafish. Nature Communications, 2021, 12, 1125.	12.8	29
5	A switch in pdgfrb cell-derived ECM composition prevents inhibitory scarring and promotes axon regeneration in the zebrafish spinal cord. Developmental Cell, 2021, 56, 509-524.e9.	7.0	40
6	Heparan sulfate proteoglycan expression in the regenerating zebrafish fin. Developmental Dynamics, 2021, 250, 1368-1380.	1.8	8
7	Electron dose rate and oxygen depletion protect zebrafish embryos from radiation damage. Radiotherapy and Oncology, 2021, 158, 7-12.	0.6	26
8	CRISPR/Cas9-Based Split Fluorescent Protein Tagging. Zebrafish, 2021, 18, 369-373.	1.1	0
9	Deletion of Irrk2 causes early developmental abnormalities and age-dependent increase of monoamine catabolism in the zebrafish brain. PLoS Genetics, 2021, 17, e1009794.	3.5	5
10	Isthmin1, a secreted signaling protein, acts downstream of diverse embryonic patterning centers in development. Cell and Tissue Research, 2021, 383, 987-1002.	2.9	4
11	Visual Function is Gradually Restored During Retina Regeneration in Adult Zebrafish. Frontiers in Cell and Developmental Biology, 2021, 9, 831322.	3.7	9
12	Zebrafish Spinal Cord Repair Is Accompanied by Transient Tissue Stiffening. Biophysical Journal, 2020, 118, 448-463.	0.5	37
13	Long-term in vivo imaging reveals tumor-specific dissemination and captures host tumor interaction in zebrafish xenografts. Scientific Reports, 2020, 10, 13254.	3. 3	20
14	Vertebrate brain regeneration $\hat{a} \in \hat{a}$ a community effort of fate-restricted precursor cell types. Current Opinion in Genetics and Development, 2020, 64, 101-108.	3.3	12
15	Reactive oligodendrocyte progenitor cells (re-)myelinate the regenerating zebrafish spinal cord. Development (Cambridge), 2020, 147, .	2.5	13
16	Single cell sequencing of radial glia progeny reveals diversity of newborn neurons in the adult zebrafish brain. Development (Cambridge), 2020, 147, 1855951.	2.5	60
17	Cell-fate plasticity, adhesion and cell sorting complementarily establish a sharp midbrain-hindbrain boundary. Development (Cambridge), 2020, 147, .	2.5	11
18	Preclinical evaluation of platinum-loaded hydroxyapatite nanoparticles in an embryonic zebrafish xenograft model. Nanoscale, 2020, 12, 13582-13594.	5.6	13

#	Article	IF	CITATIONS
19	Targeting of radioactive platinum-bisphosphonate anticancer drugs to bone of high metabolic activity. Scientific Reports, 2020, 10, 5889.	3.3	15
20	Singleâ€cell transcriptome analysis reveals thyrocyte diversity in the zebrafish thyroid gland. EMBO Reports, 2020, 21, e50612.	4.5	23
21	Cerebellar Development and Neurogenesis in Zebrafish. , 2020, , 1-24.		1
22	Dose-dependent Changes After Proton and Photon Irradiation in a Zebrafish Model. Anticancer Research, 2020, 40, 6123-6135.	1.1	0
23	Feasibility of proton FLASH effect tested by zebrafish embryo irradiation. Radiotherapy and Oncology, 2019, 139, 46-50.	0.6	144
24	Electrophysiological Properties of Adult Zebrafish Oligodendrocyte Progenitor Cells. Frontiers in Cellular Neuroscience, 2019, 13, 102.	3.7	9
25	Polyacrylamide Bead Sensors for in vivo Quantification of Cell-Scale Stress in Zebrafish Development. Scientific Reports, 2019, 9, 17031.	3.3	47
26	Targeted knock-in of CreER T2 in zebrafish using CRISPR/Cas9. Cell and Tissue Research, 2018, 372, 41-50.	2.9	33
27	Radiobiological effects and proton RBE determined by wildtype zebrafish embryos. PLoS ONE, 2018, 13, e0206879.	2.5	18
28	Role of the immune response in initiating central nervous system regeneration in vertebrates: learning from the fish. International Journal of Developmental Biology, 2018, 62, 403-417.	0.6	20
29	Distinct roles of neuroepithelial-like and radial glia-like progenitor cells in cerebellar regeneration. Development (Cambridge), 2017, 144, 1462-1471.	2.5	61
30	Osteoblast Production by Reserved Progenitor Cells in Zebrafish Bone Regeneration and Maintenance. Developmental Cell, 2017, 43, 643-650.e3.	7.0	70
31	Different developmental histories of beta-cells generate functional and proliferative heterogeneity during islet growth. Nature Communications, 2017, 8, 664.	12.8	53
32	Zebrafish In-Vivo Screening for Compounds Amplifying Hematopoietic Stem and Progenitor Cells: - Preclinical Validation in Human CD34+ Stem and Progenitor Cells. Scientific Reports, 2017, 7, 12084.	3.3	10
33	Dlx3b/4b is required for early-born but not later-forming sensory hair cells during zebrafish inner ear development. Biology Open, 2017, 6, 1270-1278.	1.2	9
34	Immune Suppressive and Bone Inhibitory Effects of Prednisolone in Growing and Regenerating Zebrafish Tissues. Journal of Bone and Mineral Research, 2017, 32, 2476-2488.	2.8	56
35	Ligand-Controlled Site-Specific Recombination in Zebrafish. Methods in Molecular Biology, 2017, 1642, 87-97.	0.9	3
36	Creâ€inducible siteâ€specific recombination in zebrafish oligodendrocytes. Developmental Dynamics, 2017, 246, 41-49.	1.8	15

#	Article	IF	Citations
37	Clonal fate mapping quantifies the number ofÂhaematopoietic stem cells that arise duringÂdevelopment. Nature Cell Biology, 2017, 19, 17-27.	10.3	90
38	Improved Imaging of Magnetically Labeled Cells Using Rotational Magnetomotive Optical Coherence Tomography. Applied Sciences (Switzerland), 2017, 7, 444.	2.5	6
39	CRISPR/Cas9-Mediated Zebrafish Knock-in as a Novel Strategy to Study Midbrain-Hindbrain Boundary Development. Frontiers in Neuroanatomy, 2017, 11, 52.	1.7	37
40	The Zebrafish Cerebellum., 2016,, 411-421.		2
41	In Vivo Chemical Screen in Zebrafish Embryos Identifies Regulators of Hematopoiesis Using a Semiautomated Imaging Assay. Journal of Biomolecular Screening, 2016, 21, 956-964.	2.6	14
42	Generation of a conditional <i>limala</i> allele in zebrafish using the <scp>FLE</scp> x switch technology. Genesis, 2016, 54, 19-28.	1.6	4
43	Adult Neurogenesis in Fish. Cold Spring Harbor Perspectives in Biology, 2016, 8, a019018.	5.5	60
44	Isolation of Novel CreERT2-Driver Lines in Zebrafish Using an Unbiased Gene Trap Approach. PLoS ONE, 2015, 10, e0129072.	2.5	19
45	Opposing Shh and Fgf signals initiate nasotemporal patterning of the retina. Development (Cambridge), 2015, 142, 3933-42.	2.5	46
46	Asymmetric inheritance of the apical domain and self-renewal of retinal ganglion cell progenitors depend on Anillin function. Development (Cambridge), 2015, 142, 832-9.	2.5	27
47	Efficient Cargo Delivery into Adult Brain Tissue Using Short Cell-Penetrating Peptides. PLoS ONE, 2015, 10, e0124073.	2.5	27
48	Effects of inflammation on stem cells: together they strive?. EMBO Reports, 2015, 16, 416-426.	4.5	171
49	Dynamic Association with Donor Cell Filopodia and Lipid-Modification Are Essential Features of Wnt8a during Patterning of the Zebrafish Neuroectoderm. PLoS ONE, 2014, 9, e84922.	2.5	55
50	Towards a comprehensive eye model for zebrafish retinal imaging using full range spectral domain optical coherence tomography. Proceedings of SPIE, 2014, , .	0.8	2
51	<scp>CXCR</scp> 4 blockade and Sphingosineâ€1â€phosphate activation facilitate engraftment of haematopoietic stem and progenitor cells in a nonâ€myeloablative transplant model. British Journal of Haematology, 2014, 164, 409-413.	2.5	4
52	Neuroinflammation and central nervous system regeneration in vertebrates. Trends in Cell Biology, 2014, 24, 128-135.	7.9	90
53	Simplet/Fam53b is required for Wnt signal transduction by regulating \hat{l}^2 -catenin nuclear localization. Development (Cambridge), 2014, 141, 3529-3539.	2.5	35
54	Endocytosis and Signaling during Development. Cold Spring Harbor Perspectives in Biology, 2014, 6, a017020-a017020.	5.5	36

#	Article	lF	CITATIONS
55	Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Research, 2014, 3, 308.	1.6	68
56	Subdivisions of the adult zebrafish pallium based on molecular marker analysis. F1000Research, 2014, 3, 308.	1.6	97
57	Simplet/Fam53b is required for Wnt signal transduction by regulating \hat{l}^2 -catenin nuclear localization. Journal of Cell Science, 2014, 127, e1-e1.	2.0	0
58	Development and specification of cerebellar stem and progenitor cells in zebrafish: from embryo to adult. Neural Development, 2013, 8, 9.	2.4	82
59	Generation and interpretation of FGF morphogen gradients in vertebrates. Current Opinion in Genetics and Development, 2013, 23, 415-422.	3.3	41
60	Cerebellar Development and Neurogenesis in Zebrafish. , 2013, , 1441-1462.		4
61	Comparative aspects of adult neural stem cell activity in vertebrates. Development Genes and Evolution, 2013, 223, 131-147.	0.9	148
62	Morphogen transport. Development (Cambridge), 2013, 140, 1621-1638.	2.5	217
63	Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development (Cambridge), 2013, 140, 1936-1945.	2.5	29
64	Micromanipulation of Gene Expression in the Adult Zebrafish Brain Using Cerebroventricular Microinjection of Morpholino Oligonucleotides. Journal of Visualized Experiments, 2013, , e50415.	0.3	24
65	The Zebrafish CreZoo: An Easy-to-Handle Database for Novel CreER ^{T2} -Driver Lines. Zebrafish, 2013, 10, 259-263.	1.1	27
66	Spatial Distribution of Prominin-1 (CD133) $\hat{a} \in$ Positive Cells within Germinative Zones of the Vertebrate Brain. PLoS ONE, 2013, 8, e63457.	2.5	18
67	Notch Receptor Expression in Neurogenic Regions of the Adult Zebrafish Brain. PLoS ONE, 2013, 8, e73384.	2.5	33
68	Characterization of Light Lesion Paradigms and Optical Coherence Tomography as Tools to Study Adult Retina Regeneration in Zebrafish. PLoS ONE, 2013, 8, e80483.	2.5	32
69	Identification and Expression Analysis of Zebrafish Glypicans during Embryonic Development. PLoS ONE, 2013, 8, e80824.	2.5	19
70	The homeodomain factor $i>Gbx1$ is required for locomotion and cell specification in the dorsal spinal cord. PeerJ, 2013, 1, e142.	2.0	7
71	\hat{l}^2 -arrestin control of late endosomal sorting facilitates decoy receptor function and chemokine gradient formation. Development (Cambridge), 2012, 139, 2897-2902.	2.5	35
72	Regenerative Neurogenesis from Neural Progenitor Cells Requires Injury-Induced Expression of Gata3. Developmental Cell, 2012, 23, 1230-1237.	7.0	146

#	Article	IF	Citations
73	Acute Inflammation Initiates the Regenerative Response in the Adult Zebrafish Brain. Science, 2012, 338, 1353-1356.	12.6	480
74	The chemokine receptor cxcr5 regulates the regenerative neurogenesis response in the adult zebrafish brain. Neural Development, 2012, 7, 27.	2.4	88
75	Fgf Signaling is Required for Photoreceptor Maintenance in the Adult Zebrafish Retina. PLoS ONE, 2012, 7, e30365.	2.5	62
76	A hybrid imaging system for simultaneous ophthalmic optical coherence tomography and dual-channel fluorescence detection in small animal models. Biomedizinische Technik, 2012, 57, .	0.8	1
77	Adult neurogenesis and brain regeneration in zebrafish. Developmental Neurobiology, 2012, 72, 429-461.	3.0	314
78	Subdivisions of the adult zebrafish subpallium by molecular marker analysis. Journal of Comparative Neurology, 2012, 520, 633-655.	1.6	134
79	Regeneration of the adult zebrafish brain from neurogenic radial glia-type progenitors. Development (Cambridge), 2011, 138, 4831-4841.	2.5	390
80	Mutant Generation in Vertebrate Model Organisms by TILLING. Methods in Molecular Biology, 2011, 770, 475-504.	0.9	18
81	Bone Regenerates via Dedifferentiation of Osteoblasts in the Zebrafish Fin. Developmental Cell, 2011, 20, 713-724.	7.0	346
82	Distinct and Conserved Prominin-1/CD133–Positive Retinal Cell Populations Identified across Species. PLoS ONE, 2011, 6, e17590.	2.5	21
83	Interpretation of the FGF8 morphogen gradient is regulated by endocytic trafficking. Nature Cell Biology, 2011, 13, 153-158.	10.3	52
84	Boundary formation and maintenance in tissue development. Nature Reviews Genetics, 2011, 12, 43-55.	16.3	301
85	Lernen vom Lurch. Forschung, 2011, 36, 18-21.	0.0	0
86	Zebrafish limb development is triggered by a retinoic acid signal during gastrulation. Developmental Dynamics, 2011, 240, 1116-1126.	1.8	28
87	Generation of a nonâ€leaky heat shock–inducible Cre line for conditional Cre/lox strategies in zebrafish. Developmental Dynamics, 2011, 240, 108-115.	1.8	93
88	Cxcl12 evolution – subfunctionalization of a ligand through altered interaction with the chemokine receptor. Development (Cambridge), 2011, 138, 2909-2914.	2.5	31
89	Cerebroventricular Microinjection (CVMI) into Adult Zebrafish Brain Is an Efficient Misexpression Method for Forebrain Ventricular Cells. PLoS ONE, 2011, 6, e27395.	2.5	53
90	Heterogeneity and Fgf dependence of adult neural progenitors in the zebrafish telencephalon. Glia, 2010, 58, 1345-1363.	4.9	138

#	Article	IF	Citations
91	Dynamic Coupling of Pattern Formation and Morphogenesis in the Developing Vertebrate Retina. PLoS Biology, 2009, 7, e1000214.	5.6	115
92	Duplication of fgfr1 Permits Fgf Signaling to Serve as a Target for Selection during Domestication. Current Biology, 2009, 19, 1642-1647.	3.9	110
93	Zebrafish gbx1 refines the midbrain-hindbrain boundary border and mediates the Wnt8 posteriorization signal. Neural Development, 2009, 4, 12.	2.4	39
94	Fgf8 morphogen gradient forms by a source-sink mechanism with freely diffusing molecules. Nature, 2009, 461, 533-536.	27.8	335
95	Modular scanning FCS quantifies receptor-ligand interactions in living multicellular organisms. Nature Methods, 2009, 6, 643-645.	19.0	132
96	Tissue Micromanipulation in Zebrafish Embryos. Methods in Molecular Biology, 2009, 546, 153-172.	0.9	13
97	Stem Cells in the Adult Zebrafish Cerebellum: Initiation and Maintenance of a Novel Stem Cell Niche. Journal of Neuroscience, 2009, 29, 6142-6153.	3.6	183
98	Modular Scanning FCS quantifies ligand-receptor interactions in live multicellular organisms. Biophysical Journal, 2009, 96, 208a.	0.5	1
99	Neural Patterning: Midbrain–Hindbrain Boundary. , 2009, , 205-211.		1
100	Temporally-Controlled Site-Specific Recombination in Zebrafish. PLoS ONE, 2009, 4, e4640.	2.5	182
101	The Endosomal Protein Appl1 Mediates Akt Substrate Specificity and Cell Survival in Vertebrate Development. Cell, 2008, 133, 486-497.	28.9	307
102	Proliferation, neurogenesis and regeneration in the non-mammalian vertebrate brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 101-122.	4.0	313
103	Early developmental specification of the thyroid gland depends on <i>han</i> expressing surrounding tissue and on FGF signals. Development (Cambridge), 2007, 134, 2871-2879.	2.5	64
104	Pbx proteins cooperate with Engrailed to pattern the midbrain–hindbrain and diencephalic–mesencephalic boundaries. Developmental Biology, 2007, 301, 504-517.	2.0	36
105	Micro fluid segment technique for screening and development studies on Danio rerio embryos. Lab on A Chip, 2007, 7, 1132.	6.0	120
106	Neural stem cells and neurogenesis in the adult zebrafish brain: Origin, proliferation dynamics, migration and cell fate. Developmental Biology, 2006, 295, 263-277.	2.0	540
107	Global and local mechanisms of forebrain and midbrain patterning. Current Opinion in Neurobiology, 2006, 16, 5-12.	4.2	63
108	Analysis and visualization of cell movement in the developing zebrafish brain. Developmental Dynamics, 2006, 235, 928-933.	1.8	14

#	Article	IF	Citations
109	Analysis and visualization of cell movement in the developing zebrafish brain. Developmental Dynamics, 2006, 235, spc1-spc1.	1.8	0
110	Hedgehog signalling from the zona limitans intrathalamica orchestrates patterning of the zebrafish diencephalon. Development (Cambridge), 2006, 133, 855-864.	2.5	138
111	Maternal control of vertebrate dorsoventral axis formation and epiboly by the POU domain protein Spg/Pou2/Oct4. Development (Cambridge), 2006, 133, 2757-2770.	2.5	92
112	Distinct tissue-specificity of three zebrafishext1 genes encoding proteoglycan modifying enzymes and their relationship to somiticSonic hedgehog signaling. Developmental Dynamics, 2005, 232, 498-505.	1.8	27
113	Positioning of the midbrain-hindbrain boundary organizer through global posteriorization of the neuroectoderm mediated by Wnt8 signaling. Development (Cambridge), 2005, 132, 1261-1272.	2.5	119
114	Lineage restriction maintains a stable organizer cell population at the zebrafish midbrain-hindbrain boundary. Development (Cambridge), 2005, 132, 3209-3216.	2.5	43
115	Target-selected mutant screen by TILLING in Drosophila. Genome Research, 2005, 15, 718-723.	5.5	105
116	Fgf signals from a novel signaling center determine axial patterning of the prospective neural retina. Development (Cambridge), 2005, 132, 4951-4962.	2.5	77
117	Zebrafish fgfr1 is a member of the fgf8 synexpression group and is required for fgf8 signalling at the midbrain-hindbrain boundary. Development Genes and Evolution, 2004, 214, 285-95.	0.9	55
118	Isolation and expression of the homeobox geneGbx1 during mouse development. Developmental Dynamics, 2004, 229, 334-339.	1.8	29
119	Divide et Impera – the midbrain–hindbrain boundary and its organizer. Trends in Neurosciences, 2004, 27, 727-734.	8.6	95
120	The POU Domain Protein Spg (Pou2/Oct4) Is Essential for Endoderm Formation in Cooperation with the HMG Domain Protein Casanova. Developmental Cell, 2004, 6, 91-101.	7.0	108
121	Endocytosis Controls Spreading and Effective Signaling Range of Fgf8 Protein. Current Biology, 2004, 14, 1834-1841.	3.9	113
122	Integrity of the midbrain region is required to maintain the diencephalic-mesencephalic boundary in zebrafishno isthmus/pax2.1 mutants. Developmental Dynamics, 2003, 228, 313-322.	1.8	34
123	Imaging brain development and organogenesis in zebrafish using immobilized embryonic explants. Developmental Dynamics, 2003, 228, 464-474.	1.8	36
124	Cloning, expression and relationship of zebrafish gbx1 and gbx2 genes to Fgf signaling. Mechanisms of Development, 2003, 120, 919-936.	1.7	58
125	Engrailed and Fgf8 act synergistically to maintain the boundary between diencephalon and mesencephalon. Development (Cambridge), 2003, 130, 4881-4893.	2.5	64
126	Isthmus-to-midbrain transformation in the absence of midbrain-hindbrain organizer activity. Development (Cambridge), 2003, 130, 6611-6623.	2.5	64

#	Article	IF	Citations
127	Cloning and expression of Ventrhoid, a novel vertebrate homologue of the Drosophila EGF pathway gene rhomboid. Mechanisms of Development, 2002, 113, 73-77.	1.7	21
128	Fgf8 and Fgf3 are required for zebrafish ear placode induction, maintenance and inner ear patterning. Mechanisms of Development, 2002, 119, 91-108.	1.7	225
129	Molecular characterization of Calymmin, a novel notochord sheath-associated extracellular matrix protein in the zebrafish embryo. Developmental Dynamics, 2002, 224, 200-209.	1.8	17
130	Patterning the Zebrafish Central Nervous System. Results and Problems in Cell Differentiation, 2002, 40, 181-215.	0.7	55
131	Retinoic acid signalling in the zebrafish embryo is necessary during pre-segmentation stages to pattern the anterior-posterior axis of the CNS and to induce a pectoral fin bud. Development (Cambridge), 2002, 129, 2851-2865.	2.5	259
132	A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish <i>pax2.1</i> promoter in transgenic lines. Development (Cambridge), 2002, 129, 3227-3239.	2.5	81
133	<i>pax2.1</i> is required for the development of thyroid follicles in zebrafish. Development (Cambridge), 2002, 129, 3751-3760.	2.5	150
134	The zebrafish <i>spiel-ohne-grenzen</i> (<i>spg</i>) gene encodes the POU domain protein Pou2 related to mammalian <i>Oct4</i>)and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development (Cambridge), 2002, 129, 905-916.	2.5	130
135	<i>spiel-ohne-grenzen/pou2</i> mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development (Cambridge), 2002, 129, 917-933.	2.5	78
136	The zebrafish spiel-ohne-grenzen (spg) gene encodes the POU domain protein Pou2 related to mammalian Oct4 and is essential for formation of the midbrain and hindbrain, and for pre-gastrula morphogenesis. Development (Cambridge), 2002, 129, 905-16.	2.5	35
137	Spiel-ohne-grenzen/pou2 mediates regional competence to respond to Fgf8 during zebrafish early neural development. Development (Cambridge), 2002, 129, 917-33.	2.5	24
138	A novel positive transcriptional feedback loop in midbrain-hindbrain boundary development is revealed through analysis of the zebrafish pax2.1 promoter in transgenic lines. Development (Cambridge), 2002, 129, 3227-39.	2.5	34
139	Tight transcriptional control of the ETS domain factors Erm and Pea3 by Fgf signaling during early zebrafish development. Mechanisms of Development, 2001, 107, 105-117.	1.7	222
140	Morpholino-induced knockdown of zebrafish engrailed geneseng2 andeng3 reveals redundant and unique functions in midbrain-hindbrain boundary development. Genesis, 2001, 30, 129-133.	1.6	43
141	Morpholino-induced knockdown of Fgf8 efficiently phenocopies the acerebellar (ACE) phenotype. Genesis, 2001, 30, 157-159.	1.6	26
142	The midbrain–hindbrain boundary organizer. Current Opinion in Neurobiology, 2001, 11, 34-42.	4.2	301
143	<i>sprouty4</i> acts in vivo as a feedback-induced antagonist of FGF signaling in zebrafish. Development (Cambridge), 2001, 128, 2175-2186.	2.5	171
144	Inner ear and lateral line expression of a zebrafish Nkx5-1 gene and its downregulation in the ears of FGF8 mutant, ace. Mechanisms of Development, 2000, 97, 161-165.	1.7	50

#	Article	IF	CITATIONS
145	Overlapping and distinct functions provided by fgf17, a new zebrafish member of the Fgf8/17/18 subgroup of Fgfs. Mechanisms of Development, 2000, 99, 39-49.	1.7	68
146	Zebrafish (<i>Danio rerio</i>) Presenilin Promotes Aberrant Amyloid β-Peptide Production and Requires a Critical Aspartate Residue for Its Function in Amyloidogenesis. Biochemistry, 1999, 38, 13602-13609.	2.5	118
147	Evolution and homology of the nervous system: cross-phylum rescues of otd/Otx genes. Trends in Genetics, 1998, 14, 211-214.	6.7	64
148	Zebrafish vimentin: molecular characterization, assembly properties and developmental expression. European Journal of Cell Biology, 1998, 77, 175-187.	3.6	60
149	Asymmetric division and polarity of neuroepithelial cells. Current Opinion in Neurobiology, 1997, 7, 29-39.	4.2	144
150	Analysis of axon tract formation in the zebrafish brain: the role of territories of gene expression and their boundaries. Cell and Tissue Research, 1997, 290, 189-196.	2.9	27
151	Mutations affecting pigmentation and shape of the adult zebrafish. Development Genes and Evolution, 1996, 206, 260-276.	0.9	164
152	Second-site modifiers of the split mutation of Notch define genes involved in neurogenesis in Drosophila melanogaster. Roux's Archives of Developmental Biology, 1990, 198, 275-285.	1.2	71
153	Two groups of interrelated genes regulate early neurogenesis in Drosophila melanogaster. Roux's Archives of Developmental Biology, 1988, 197, 457-470.	1.2	79
154	daughterless, a Drosophila gene essential for both neurogenesis and sex determination, has sequence similarities to myc and the achaete-scute complex. Cell, 1988, 55, 1061-1067.	28.9	465
155	Effect of reduced temperature on glycoprotein (Ig, HLA) processing and transport in lymphoid cells. Molecular Immunology, 1985, 22, 787-794.	2.2	8