
Mark Connors

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3405249/publications.pdf

Version: 2024-02-01

#	Article	IF	CITATIONS
1	HIV nonprogressors preferentially maintain highly functional HIV-specific CD8+ T cells. Blood, 2006, 107, 4781-4789.	1.4	1,681
2	Rational Design of Envelope Identifies Broadly Neutralizing Human Monoclonal Antibodies to HIV-1. Science, 2010, 329, 856-861.	12.6	1,600
3	HIV preferentially infects HIV-specific CD4+ T cells. Nature, 2002, 417, 95-98.	27.8	1,132
4	HIV-specific CD8+ T cell proliferation is coupled to perforin expression and is maintained in nonprogressors. Nature Immunology, 2002, 3, 1061-1068.	14.5	909
5	Expression of CD57 defines replicative senescence and antigen-induced apoptotic death of CD8+ T cells. Blood, 2003, 101, 2711-2720.	1.4	887
6	Broad and potent neutralization of HIV-1 by a gp41-specific human antibody. Nature, 2012, 491, 406-412.	27.8	753
7	HIV-1-specific CD4+ T cells are detectable in most individuals with active HIV-1 infection, but decline with prolonged viral suppression. Nature Medicine, 1999, 5, 518-525.	30.7	712
8	Structure and immune recognition of trimeric pre-fusion HIV-1 Env. Nature, 2014, 514, 455-461.	27.8	702
9	Innate partnership of HLA-B and KIR3DL1 subtypes against HIV-1. Nature Genetics, 2007, 39, 733-740.	21.4	691
10	Lytic Granule Loading of CD8+ T Cells Is Required for HIV-Infected Cell Elimination Associated with Immune Control. Immunity, 2008, 29, 1009-1021.	14.3	500
11	Administration of an Anti-CD8 Monoclonal Antibody Interferes with the Clearance of Chimeric Simian/Human Immunodeficiency Virus during Primary Infections of Rhesus Macaques. Journal of Virology, 1998, 72, 164-169.	3.4	438
12	Broad and potent HIV-1 neutralization by a human antibody that binds the gp41–gp120 interface. Nature, 2014, 515, 138-142.	27.8	400
13	Trimeric HIV-1-Env Structures Define Glycan Shields from Clades A, B, and G. Cell, 2016, 165, 813-826.	28.9	379
14	Multidonor Analysis Reveals Structural Elements, Genetic Determinants, and Maturation Pathway for HIV-1 Neutralization by VRC01-Class Antibodies. Immunity, 2013, 39, 245-258.	14.3	332
15	Fusion peptide of HIV-1 as a site of vulnerability to neutralizing antibody. Science, 2016, 352, 828-833.	12.6	310
16	Structural Repertoire of HIV-1-Neutralizing Antibodies Targeting the CD4 Supersite in 14 Donors. Cell, 2015, 161, 1280-1292.	28.9	305
17	Breadth of Human Immunodeficiency Virus-Specific Neutralizing Activity in Sera: Clustering Analysis and Association with Clinical Variables. Journal of Virology, 2010, 84, 1631-1636.	3.4	304
18	Identification of a CD4-Binding-Site Antibody to HIV that Evolved Near-Pan Neutralization Breadth. Immunity, 2016, 45, 1108-1121.	14.3	304

MARK CONNORS

#	Article	IF	CITATIONS
19	Frequency and Phenotype of Human Immunodeficiency Virus Envelope-Specific B Cells from Patients with Broadly Cross-Neutralizing Antibodies. Journal of Virology, 2009, 83, 188-199.	3.4	297
20	Maintenance of Large Numbers of Virus-Specific CD8+ T Cells in HIV-Infected Progressors and Long-Term Nonprogressors. Journal of Immunology, 2000, 165, 1082-1092.	0.8	248
21	Enhanced Potency of a Broadly Neutralizing HIV-1 Antibody <i>In Vitro</i> Improves Protection against Lentiviral Infection <i>In Vivo</i> . Journal of Virology, 2014, 88, 12669-12682.	3.4	248
22	Maturation and Diversity of the VRC01-Antibody Lineage over 15 Years of Chronic HIV-1 Infection. Cell, 2015, 161, 470-485.	28.9	226
23	Trispecific broadly neutralizing HIV antibodies mediate potent SHIV protection in macaques. Science, 2017, 358, 85-90.	12.6	225
24	Neutralizing antibodies to HIV-1 envelope protect more effectively in vivo than those to the CD4 receptor. Science Translational Medicine, 2014, 6, 243ra88.	12.4	222
25	Delineating Antibody Recognition in Polyclonal Sera from Patterns of HIV-1 Isolate Neutralization. Science, 2013, 340, 751-756.	12.6	213
26	Diminished Proliferation of Human Immunodeficiency Virus-Specific CD4 + T Cells Is Associated with Diminished Interleukin-2 (IL-2) Production and Is Recovered by Exogenous IL-2. Journal of Virology, 2003, 77, 10900-10909.	3.4	171
27	Defective Human Immunodeficiency Virus-Specific CD8 ⁺ T-Cell Polyfunctionality, Proliferation, and Cytotoxicity Are Not Restored by Antiretroviral Therapy. Journal of Virology, 2009, 83, 11876-11889.	3.4	167
28	Isolation of human monoclonal antibodies from peripheral blood B cells. Nature Protocols, 2013, 8, 1907-1915.	12.0	167
29	Cotton rats previously immunized with a chimeric RSV FG glycoprotein develop enhanced pulmonary pathology when infected with RSV, a phenomenon not encountered following immunization with vaccinia—RSV recombinants or RSV. Vaccine, 1992, 10, 475-484.	3.8	146
30	The Differential Ability of HLA B * 5701 + Long-Term Nonprogressors and Progressors To Restrict Human Immunodeficiency Virus Replication Is Not Caused by Loss of Recognition of Autologous Viral gag Sequences. Journal of Virology, 2003, 77, 6889-6898.	3.4	143
31	CD25+Regulatory T Cells Isolated from HIV-Infected Individuals Suppress The Cytolytic And Nonlytic Antiviral Activity of HIV-specific CD8+T Cells in Vitro. AIDS Research and Human Retroviruses, 2007, 23, 438-450.	1.1	120
32	Long-term Nonprogressive Disease Among Untreated HIV-Infected Individuals. JAMA - Journal of the American Medical Association, 2010, 304, 194.	7.4	116
33	Success and failure of the cellular immune response against HIV-1. Nature Immunology, 2015, 16, 563-570.	14.5	88
34	Qualitative features of the HIV-specific CD8+ T-cell response associated with immunologic control. Current Opinion in HIV and AIDS, 2011, 6, 169-173.	3.8	82
35	Virus-like Particles Identify an HIV V1V2 Apex-Binding Neutralizing Antibody that Lacks a Protruding Loop. Immunity, 2017, 46, 777-791.e10.	14.3	81
36	Selection Pressure on HIV-1 Envelope by Broadly Neutralizing Antibodies to the Conserved CD4-Binding Site. Journal of Virology, 2012, 86, 5844-5856.	3.4	75

MARK CONNORS

#	Article	IF	CITATIONS
37	Human Immunodeficiency Virus Viremia Induces Plasmacytoid Dendritic Cell Activation In Vivo and Diminished Alpha Interferon Production In Vitro. Journal of Virology, 2008, 82, 3997-4006.	3.4	72
38	CD4+ immune escape and subsequent T-cell failure following chimpanzee immunization against hepatitis C virus. Hepatology, 2006, 44, 736-745.	7.3	68
39	Potential of conventional & bispecific broadly neutralizing antibodies for prevention of HIV-1 subtype A, C & D infections. PLoS Pathogens, 2018, 14, e1006860.	4.7	68
40	Frequency and function of HIV-specific CD8+ T Cells. Immunology Letters, 2001, 79, 141-150.	2.5	64
41	SARS-CoV-2 Vaccines: Much Accomplished, Much to Learn. Annals of Internal Medicine, 2021, 174, 687-690.	3.9	64
42	Diminished Production of Monocyte Proinflammatory Cytokines during Human Immunodeficiency Virus Viremia Is Mediated by Type I Interferons. Journal of Virology, 2006, 80, 11486-11497.	3.4	63
43	Optimization of the Solubility of HIV-1-Neutralizing Antibody 10E8 through Somatic Variation and Structure-Based Design. Journal of Virology, 2016, 90, 5899-5914.	3.4	62
44	Surface-Matrix Screening Identifies Semi-specific Interactions that Improve Potency of a Near Pan-reactive HIV-1-Neutralizing Antibody. Cell Reports, 2018, 22, 1798-1809.	6.4	52
45	Killer cell immunoglobulin–like receptor 3DL1 variation modifies HLA-B*57 protection against HIV-1. Journal of Clinical Investigation, 2018, 128, 1903-1912.	8.2	52
46	Comparisons of CD8 ⁺ T Cells Specific for Human Immunodeficiency Virus, Hepatitis C Virus, and Cytomegalovirus Reveal Differences in Frequency, Immunodominance, Phenotype, and Interleukin-2 Responsiveness. Journal of Virology, 2009, 83, 2728-2742.	3.4	42
47	Virological Control by the CD4-Binding Site Antibody N6 in Simian-Human Immunodeficiency Virus-Infected Rhesus Monkeys. Journal of Virology, 2017, 91, .	3.4	40
48	Prolonged evolution of the memory B cell response induced by a replicating adenovirus-influenza H5 vaccine. Science Immunology, 2019, 4, .	11.9	40
49	Resistance to Replication of Human Immunodeficiency Virus Challenge in SCID-Hu Mice Engrafted with Peripheral Blood Mononuclear Cells of Nonprogressors Is Mediated by CD8+T Cells and Associated with a Proliferative Response to p24 Antigen. Journal of Virology, 2000, 74, 2023-2028.	3.4	35
50	A replication-competent adenovirus-vectored influenza vaccine induces durable systemic and mucosal immunity. Journal of Clinical Investigation, 2021, 131, .	8.2	35
51	Trivalent Adenovirus Type 5 HIV Recombinant Vaccine Primes for Modest Cytotoxic Capacity That Is Greatest in Humans with Protective HLA Class I Alleles. PLoS Pathogens, 2011, 7, e1002002.	4.7	34
52	Structure and Recognition of a Novel HIV-1 gp120-gp41 Interface Antibody that Caused MPER Exposure through Viral Escape. PLoS Pathogens, 2017, 13, e1006074.	4.7	33
53	The role of CD4+ and CD8+ T cells in controlling HIV infection. Current Infectious Disease Reports, 2002, 4, 461-467.	3.0	29
54	CD8+ T-cell Cytotoxic Capacity Associated with Human Immunodeficiency Virus-1 Control Can Be Mediated through Various Epitopes and Human Leukocyte Antigen Types. EBioMedicine, 2015, 2, 46-58.	6.1	27

Mark Connors

#	Article	IF	CITATIONS
55	Cytotoxic Capacity of SIV-Specific CD8+ T Cells against Primary Autologous Targets Correlates with Immune Control in SIV-Infected Rhesus Macaques. PLoS Pathogens, 2013, 9, e1003195.	4.7	24
56	Advances in understanding immunologic control of HIV infection. Current HIV/AIDS Reports, 2004, 1, 12-17.	3.1	16
57	HIVâ€1–Infected Patients with Envelopeâ€Specific Lymphoproliferation or Longâ€Term Nonprogression Lack Antibodies Suppressing Glycoprotein 120 Antigen Presentation. Journal of Infectious Diseases, 2004, 189, 852-861.	4.0	9
58	Antigenic Restimulation of Virus-Specific Memory CD8 ⁺ T Cells Requires Days of Lytic Protein Accumulation for Maximal Cytotoxic Capacity. Journal of Virology, 2020, 94, .	3.4	9
59	Immunologic Control of HIV-1: What Have We Learned and Can We Induce It?. Current HIV/AIDS Reports, 2021, 18, 211-220.	3.1	7
60	Qualitative host factors associated with immunological control of HIV infection by CD8 T cells. Current Opinion in HIV and AIDS, 2006, 1, 28-33.	3.8	6
61	Adoptive lymphocyte transfer to an HIV-infected progressor from an elite controller. JCI Insight, 2019, 4, .	5.0	6
62	Class II-Restricted CD8s: New Lessons Violate Old Paradigms. Immunity, 2016, 45, 712-714.	14.3	4
63	Toll-like receptor 7-adapter complex modulates interferon-α production in HIV-stimulated plasmacytoid dendritic cells. PLoS ONE, 2019, 14, e0225806.	2.5	3
64	The Immunology of Human Immunodeficiency Virus Infection. , 2015, , 1526-1540.e3.		3
65	Structures of HIV-1 Neutralizing Antibody 10E8 Delineate the Mechanistic Basis of Its Multi-Peak Behavior on Size-Exclusion Chromatography. Antibodies, 2021, 10, 23.	2.5	2
66	Title is missing!. , 2019, 14, e0225806.		0
67	Title is missing!. , 2019, 14, e0225806.		0
68	Title is missing!. , 2019, 14, e0225806.		0
69	Title is missing!. , 2019, 14, e0225806.		0