Sima Lev

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3404997/publications.pdf Version: 2024-02-01

SIMALEN

#	Article	IF	Citations
1	Mouse Modeling Dissecting Macrophage–Breast Cancer Communication Uncovered Roles of PYK2 in Macrophage Recruitment and Breast Tumorigenesis. Advanced Science, 2022, 9, e2105696.	11.2	14
2	Nucleoporin-93 reveals a common feature of aggressive breast cancers: robust nucleocytoplasmic transport of transcription factors. Cell Reports, 2022, 38, 110418.	6.4	12
3	Modeling Heterogeneity of Tripleâ€Negative Breast Cancer Uncovers a Novel Combinatorial Treatment Overcoming Primary Drug Resistance. Advanced Science, 2021, 8, 2003049.	11.2	15
4	The AXL-PYK2-PKCα axis as a nexus of stemness circuits in TNBC. Life Science Alliance, 2021, 4, e202000985.	2.8	7
5	Accelerating AXL targeting for TNBC therapy. International Journal of Biochemistry and Cell Biology, 2021, 139, 106057.	2.8	5
6	Proteomic analysis of circulating extracellular vesicles identifies potential markers of breast cancer progression, recurrence, and response. Science Advances, 2020, 6, .	10.3	58
7	Synthetic lethal combination targeting BET uncovered intrinsic susceptibility of TNBC to ferroptosis. Science Advances, 2020, 6, .	10.3	85
8	Mammalian PITPs at the Golgi and ER-Golgi Membrane Contact Sites. Contact (Thousand Oaks (Ventura) Tj ETQo	q0 0 0 rgB 1.3	T /gverlock 1
9	The Animal Lectin Galectin-8 Promotes Cytokine Expression and Metastatic Tumor Growth in Mice. Scientific Reports, 2020, 10, 7375.	3.3	20
10	Targeted therapy and drug resistance in triple-negative breast cancer: the EGFR axis. Biochemical Society Transactions, 2020, 48, 657-665.	3.4	80
11	Lipid Transfer Proteins and Membrane Contact Sites in Human Cancer. Frontiers in Cell and Developmental Biology, 2019, 7, 371.	3.7	33
12	PYK2 negatively regulates the Hippo pathway in TNBC by stabilizing TAZ protein. Cell Death and Disease, 2018, 9, 985.	6.3	26
13	Systems modelling of the EGFR-PYK2-c-Met interaction network predicts and prioritizes synergistic drug combinations for triple-negative breast cancer. PLoS Computational Biology, 2018, 14, e1006192.	3.2	26
14	Targeting of PYK2 Synergizes with EGFR Antagonists in Basal-like TNBC and Circumvents	0.0	69

14	HER3-Associated Resistance via the NEDD4–NDRG1 Axis. Cancer Research, 2017, 77, 86-99.	0.9	63
15	Targeting of apoptotic pathways by SMAC or BH3 mimetics distinctly sensitizes paclitaxel-resistant triple negative breast cancer cells. Oncotarget, 2017, 8, 45088-45104.	1.8	22
16	MicroRNA-182 targets SMAD7 to potentiate TGFÎ ² -induced epithelial-mesenchymal transition and metastasis of cancer cells. Nature Communications, 2016, 7, 13884.	12.8	112
17	The role of phosphatidylinositol-transfer proteins at membrane contact sites. Biochemical Society Transactions, 2016, 44, 419-424.	3.4	19
18	PYK2 sustains endosomal-derived receptor signalling and enhances epithelial-to-mesenchymal transition. Nature Communications, 2015, 6, 6064.	12.8	64

Sima Lev

#	Article	lF	CITATIONS
19	PYK2 integrates growth factor and cytokine receptors signaling and potentiates breast cancer invasion via a positive feedback loop. Oncotarget, 2015, 6, 22214-22226.	1.8	29
20	The lipid-transfer protein Nir2 enhances epithelial-mesenchymal transition and facilitates breast cancer metastasis. Journal of Cell Science, 2014, 127, 4740-9.	2.0	32
21	Tethering the assembly of SNARE complexes. Trends in Cell Biology, 2014, 24, 35-43.	7.9	252
22	The phosphatidylinositolâ€ŧransfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling. EMBO Reports, 2013, 14, 891-899.	4.5	111
23	The COG complex interacts with multiple Golgi SNAREs and enhances fusogenic SNARE complexes assembly. Journal of Cell Science, 2013, 126, 1506-16.	2.0	46
24	Deficiency of the Cog8 Subunit in Normal and <scp>CDG</scp> â€Derived Cells Impairs the Assembly of the <scp>COG</scp> and Golgi <scp>SNARE</scp> Complexes. Traffic, 2013, 14, 1065-1077.	2.7	23
25	Nonvesicular Lipid Transfer from the Endoplasmic Reticulum. Cold Spring Harbor Perspectives in Biology, 2012, 4, a013300-a013300.	5.5	92
26	VAMP-Associated Protein B (VAPB) Promotes Breast Tumor Growth by Modulation of Akt Activity. PLoS ONE, 2012, 7, e46281.	2.5	28
27	The COG complex interacts directly with Syntaxin 6 and positively regulates endosome-to-TGN retrograde transport. Journal of Cell Biology, 2011, 194, 459-472.	5.2	95
28	Non-vesicular lipid transport by lipid-transfer proteins and beyond. Nature Reviews Molecular Cell Biology, 2010, 11, 739-750.	37.0	293
29	Structural Requirements for VAP-B Oligomerization and Their Implication in Amyotrophic Lateral Sclerosis-associated VAP-B(P56S) Neurotoxicity. Journal of Biological Chemistry, 2010, 285, 13839-13849.	3.4	65
30	Direct interaction between the COG complex and the SM protein, Sly1, is required for Golgi SNARE pairing. EMBO Journal, 2009, 28, 2006-2017.	7.8	87
31	RNA interference screen for human genes associated with West Nile virus infection. Nature, 2008, 455, 242-245.	27.8	471
32	The VAP protein family: from cellular functions to motor neuron disease. Trends in Cell Biology, 2008, 18, 282-290.	7.9	200
33	Coordinated Lipid Transfer between the Endoplasmic Reticulum and the Golgi Complex Requires the VAP Proteins and Is Essential for Golgi-mediated Transport. Molecular Biology of the Cell, 2008, 19, 3871-3884.	2.1	276
34	Lipid homoeostasis and Golgi secretory function. Biochemical Society Transactions, 2006, 34, 363-366.	3.4	29
35	Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nature Cell Biology, 2005, 7, 225-234.	10.3	154
36	Depolarization Activates ERK and Proline-rich Tyrosine Kinase 2 (PYK2) Independently in Different Cellular Compartments in Hippocampal Slices. Journal of Biological Chemistry, 2005, 280, 660-668.	3.4	42

Sima Lev

#	Article	IF	CITATIONS
37	Differential Regulation of Endoplasmic Reticulum Structure through VAP-Nir Protein Interaction. Journal of Biological Chemistry, 2005, 280, 5934-5944.	3.4	168
38	A disaccharide derived from chondroitin sulphate proteoglycan promotes central nervous system repair in rats and mice+. European Journal of Neuroscience, 2004, 20, 1973-1983.	2.6	67
39	The role of the Nir/rdgB protein family in membrane trafficking and cytoskeleton remodeling. Experimental Cell Research, 2004, 297, 1-10.	2.6	54
40	Mitotic Phosphorylation of the Peripheral Golgi Protein Nir2 by Cdk1 Provides a Docking Mechanism for Plk1 and Affects Cytokinesis Completion. Molecular Cell, 2004, 14, 319-330.	9.7	82
41	Sprouty Fine-Tunes EGF Signaling through Interlinked Positive and Negative Feedback Loops. Current Biology, 2003, 13, 297-307.	3.9	171
42	Nir2, a Novel Regulator of Cell Morphogenesis. Molecular and Cellular Biology, 2002, 22, 2650-2662.	2.3	19
43	Nir2, a Human Homolog of Drosophila melanogaster Retinal Degeneration B Protein, Is Essential for Cytokinesis. Molecular and Cellular Biology, 2002, 22, 5064-5075.	2.3	41
44	Targeting of Nir2 to Lipid Droplets Is Regulated by a Specific Threonine Residue within Its PI-Transfer Domain. Current Biology, 2002, 12, 1513-1518.	3.9	53
45	Molecular aspects of retinal degenerative diseases. Cellular and Molecular Neurobiology, 2001, 21, 575-589.	3.3	29
46	Targeting of PYK2 to Focal Adhesions as a Cellular Mechanism for Convergence between Integrins and	3.4	77

G Protein-coupled Receptor Signaling Cascades. Journal of Biological Chemistry, 2000, 275, 32736-32746.