
Jay H Traverse

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3404856/publications.pdf Version: 2024-02-01

INV H TONVEDSE

#	Article	IF	CITATIONS
1	Recommendations for nomenclature and definition of cell products intended for human cardiovascular use. Cardiovascular Research, 2022, 118, 2428-2436.	3.8	6
2	Dare to dream? Cell-based therapies for heart failure after DREAM-HF: Review and roadmap for future clinical study. American Heart Journal Plus, 2022, 13, 100118.	0.6	0
3	Challenges and outcomes of the double kissing crush stenting technique: Insights from the PROGRESSâ€BIFURCATION registry. Catheterization and Cardiovascular Interventions, 2022, 99, 1038-1044.	1.7	6
4	Temporal changes in patient characteristics and outcomes in STâ€segment elevation myocardial infarction 2003–2018. Catheterization and Cardiovascular Interventions, 2021, 97, 1109-1117.	1.7	18
5	Outcomes With Combined Laser Atherectomy and Intravascular Brachytherapy in Recurrent Drug-Eluting Stent In-Stent Restenosis. Cardiovascular Revascularization Medicine, 2021, 22, 29-33.	0.8	7
6	Outcomes of intravascular brachytherapy for recurrent drugâ€eluting inâ€stent restenosis. Catheterization and Cardiovascular Interventions, 2021, 97, 32-38.	1.7	15
7	Multidisciplinary shock team is associated with improved outcomes in patients undergoing ECPR. International Journal of Artificial Organs, 2021, 44, 310-317.	1.4	5
8	Coronary Intravascular Brachytherapy for Recurrent Coronary Drug-Eluting Stent In-Stent Restenosis: A Systematic Review and Meta-Analysis. Cardiovascular Revascularization Medicine, 2021, 23, 28-35.	0.8	13
9	Point of care, bone marrow mononuclear cell therapy in ischemic heart failure patients personalized for cell potency: 12-month feasibility results from CardiAMP heart failure roll-in cohort. International Journal of Cardiology, 2021, 326, 131-138.	1.7	13
10	Reparative cell therapy for the heart: critical internal appraisal of the field in response to recent controversies. ESC Heart Failure, 2021, 8, 2306-2309.	3.1	13
11	A Phase <scp>II</scp> study of autologous mesenchymal stromal cells and câ€kit positive cardiac cells, alone or in combination, in patients with ischaemic heart failure: the <scp>CCTRN CONCERTâ€HF</scp> trial. European Journal of Heart Failure, 2021, 23, 661-674.	7.1	89
12	Rate of Incomplete Revascularization Following Coronary Artery Bypass Grafting at a Single Institution Between 2007 and 2017. American Journal of Cardiology, 2021, 144, 33-36.	1.6	1
13	Cardiology Research Internship for Undergraduate Students Provides Unique Opportunity for Next Generation of Health Care Professionals. JACC: Case Reports, 2021, 3, 985-988.	0.6	1
14	Effect of cardiosphere-derived cells on segmental myocardial function after myocardial infarction: ALLSTAR randomised clinical trial. Open Heart, 2021, 8, e001614.	2.3	15
15	Comparison of Outcomes of Patients with vs without Previous Coronary Artery Bypass Graft Surgery Presenting with ST-Segment Elevation Acute Myocardial Infarction. American Journal of Cardiology, 2021, 154, 33-40.	1.6	3
16	The coronary sinus reducer – Where modern technology meets old school physiology!. International Journal of Cardiology, 2021, 342, 31-32.	1.7	0
17	Epicardial delivery of XC001 gene therapy for refractory angina coronary treatment (The EXACT Trial): Rationale, design, and clinical considerations. American Heart Journal, 2021, 241, 38-49.	2.7	10
18	Meta-analysis of short- and long-term efficacy of mononuclear cell transplantation in patients with myocardial infarction. American Heart Journal, 2020, 220, 155-175.	2.7	7

#	Article	IF	CITATIONS
19	Left ventricular thrombus following ST-Elevation myocardial infarction: Insights from "little―and "big―data. International Journal of Cardiology, 2020, 300, 43-44.	1.7	0
20	Allogeneic Mesenchymal Cell Therapy in Anthracycline-Induced Cardiomyopathy HeartÂFailure Patients. JACC: CardioOncology, 2020, 2, 581-595.	4.0	24
21	Intracoronary ALLogeneic heart STem cells to Achieve myocardial Regeneration (ALLSTAR): a randomized, placebo-controlled, double-blinded trial. European Heart Journal, 2020, 41, 3451-3458.	2.2	78
22	Impaired therapeutic efficacy of bone marrow cells from post-myocardial infarction patients in the TIME and LateTIME clinical trials. PLoS ONE, 2020, 15, e0237401.	2.5	3
23	CD34+ cell therapy significantly reduces adverse cardiac events, health care expenditures, and mortality in patients with refractory angina. Stem Cells Translational Medicine, 2020, 9, 1147-1152.	3.3	17
24	Clinical Characteristics and OutcomesÂofÂSTEMI Patients With Cardiogenic Shock and Cardiac Arrest. JACC: Cardiovascular Interventions, 2020, 13, 1211-1219.	2.9	56
25	Prevalence, Trends, and Outcomes of Higher-Risk Percutaneous Coronary Interventions Among Patients Without Acute Coronary Syndromes. Cardiovascular Revascularization Medicine, 2019, 20, 289-292.	0.8	9
26	G-CSF's Last Stand in STEMI. Circulation Research, 2019, 125, 307-308.	4.5	2
27	First-in-Man Study of a Cardiac Extracellular Matrix Hydrogel in Early and Late Myocardial Infarction Patients. JACC Basic To Translational Science, 2019, 4, 659-669.	4.1	183
28	Coronary revascularization and use of hemodynamic support in acute coronary syndromes. Hellenic Journal of Cardiology, 2019, 60, 165-170.	1.0	4
29	Response by Traverse and Garberich to Letter Regarding Article, "NHLBI-Sponsored Randomized Trial of Postconditioning During Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction― Circulation Research, 2019, 124, e57-e58.	4.5	0
30	NHLBI-Sponsored Randomized Trial of Postconditioning During Primary Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Circulation Research, 2019, 124, 769-778.	4.5	37
31	Incidence, predictors, management and outcomes of coronary perforations. Catheterization and Cardiovascular Interventions, 2019, 93, 48-56.	1.7	41
32	The CardiAMP Heart Failure trial: A randomized controlled pivotal trial of high-dose autologous bone marrow mononuclear cells using the CardiAMP cell therapy system in patients with post–myocardial infarction heart failure: Trial rationale and study design. American Heart Journal, 2018, 201, 141-148.	2.7	22
33	Impact of sleep deprivation on the outcomes of percutaneous coronary intervention. Catheterization and Cardiovascular Interventions, 2018, 92, 1118-1125.	1.7	4
34	Autologous CD34+ cell therapy improves exercise capacity, angina frequency and reduces mortality in no-option refractory angina: a patient-level pooled analysis of randomized double-blinded trials. European Heart Journal, 2018, 39, 2208-2216.	2.2	75
35	Rationale and Design of the CONCERT-HF Trial (Combination of Mesenchymal and c-kit ⁺) Tj ETQq1 :	l 0.78431 4.5	.4 rgBT /Ove
36	New or presumed new left bundle branch block in patients with suspected ST-elevation myocardial	1.0	12

infarction. European Heart Journal: Acute Cardiovascular Care, 2018, 7, 208-217.

1.0 12

#	Article	IF	CITATIONS
37	TIME Trial: Effect of Timing of Stem Cell Delivery Following ST-Elevation Myocardial Infarction on the Recovery of Global and Regional Left Ventricular Function. Circulation Research, 2018, 122, 479-488.	4.5	50
38	"Beet It― Circulation Research, 2018, 123, 635-637.	4.5	2
39	Expecting the unexpected: preventing and managing the consequences of coronary perforations. Expert Review of Cardiovascular Therapy, 2018, 16, 805-814.	1.5	6
40	Metaâ€analysis of the impact of successful chronic total occlusion percutaneous coronary intervention on left ventricular systolic function and reverse remodeling. Journal of Interventional Cardiology, 2018, 31, 562-571.	1.2	47
41	Revascularization in "no option―patients with refractory angina: Frequency, etiology and outcomes. Catheterization and Cardiovascular Interventions, 2018, 92, 1215-1219.	1.7	13
42	Rationale and Design of the SENECA (StEm cell iNjECtion in cAncer survivors) Trial. American Heart Journal, 2018, 201, 54-62.	2.7	17
43	Is There a Role for Intravenous Stem Cell Delivery in Nonischemic Cardiomyopathy?. Circulation Research, 2017, 120, 256-258.	4.5	5
44	Evaluation of Cell Therapy on Exercise Performance and Limb Perfusion in Peripheral Artery Disease. Circulation, 2017, 135, 1417-1428.	1.6	46
45	Peripheral Blood Cytokine Levels After Acute Myocardial Infarction. Circulation Research, 2017, 120, 1947-1957.	4.5	33
46	Myocardial Injury as a New Target for Cell Therapy in Patients With Chronic Heart Failure. Circulation Research, 2017, 120, 1857-1859.	4.5	2
47	ALLogeneic Heart STem Cells to Achieve Myocardial Regeneration (ALLSTAR) Trial: Rationale and Design. Cell Transplantation, 2017, 26, 205-214.	2.5	83
48	Contemporary Arterial Access in the Cardiac Catheterization Laboratory. JACC: Cardiovascular Interventions, 2017, 10, 2233-2241.	2.9	82
49	Circulating Biomarkers to Identify Responders in Cardiac Cell therapy. Scientific Reports, 2017, 7, 4419.	3.3	18
50	Identification of cardiovascular risk factors associated with bone marrow cell subsets in patients with STEMI: a biorepository evaluation from the CCTRN TIME and LateTIME clinical trials. Basic Research in Cardiology, 2017, 112, 3.	5.9	16
51	Bone marrow cell characteristics associated with patient profile and cardiac performance outcomes in the LateTIME-Cardiovascular Cell Therapy Research Network (CCTRN) trial. American Heart Journal, 2016, 179, 142-150.	2.7	18
52	Identification of Bone Marrow Cell Subpopulations Associated with Improved Functional Outcomes in Patients with Chronic Left Ventricular Dysfunction: An Embedded Cohort Evaluation of the FOCUS-CCTRN Trial. Cell Transplantation, 2016, 25, 1675-1687.	2.5	32
53	The Misguided Regulation of Cardiac Emergencies. Circulation Research, 2016, 119, 1063-1066.	4.5	1
54	The RENEW Trial. JACC: Cardiovascular Interventions, 2016, 9, 1576-1585.	2.9	107

#	Article	IF	CITATIONS
55	Bioabsorbable Intracoronary Matrix for Prevention of Ventricular Remodeling After Myocardial Infarction. Journal of the American College of Cardiology, 2016, 68, 715-723.	2.8	79
56	Consistently Inconsistent—Bone Marrow Mononuclear Stem Cell Therapy Following Acute Myocardial Infarction. Circulation Research, 2016, 119, 404-406.	4.5	18
57	Bone Marrow Characteristics Associated With Changes in Infarct Size After STEMI. Circulation Research, 2015, 116, 99-107.	4.5	65
58	A Phase II Dose-Escalation Study of Allogeneic Mesenchymal Precursor Cells in Patients With Ischemic or Nonischemic Heart Failure. Circulation Research, 2015, 117, 576-584.	4.5	174
59	Changes in ventricular remodelling and clinical status during the year following a single administration of stromal cell-derived factor-1 non-viral gene therapy in chronic ischaemic heart failure patients: the STOP-HF randomized Phase II trial. European Heart Journal, 2015, 36, 2228-2238.	2.2	144
60	Abstract 12445: A Detailed Analysis of Peripheral Blood Cytokines 2-3 weeks After Acute Myocardial Infarction: IL-6-Related Impairment of Bone Marrow Function. Circulation, 2015, 132, .	1.6	0
61	Impact of intracoronary bone marrow cell therapy on left ventricular function in the setting of ST-segment elevation myocardial infarction: a collaborative meta-analysis. European Heart Journal, 2014, 35, 989-998.	2.2	123
62	One-Year Follow-up of Intracoronary Stem Cell Delivery on Left Ventricular Function Following ST-Elevation Myocardial Infarction. JAMA - Journal of the American Medical Association, 2014, 311, 301.	7.4	30
63	Safety and Efficacy of Ixmyelocel-T. Circulation Research, 2014, 115, 730-737.	4.5	56
64	Percutaneous Coronary Intervention in Spontaneous Coronary Artery Dissection: Role of Intravascular Ultrasound. Cardiology and Therapy, 2014, 3, 61-66.	2.6	4
65	Detailed Analysis of Bone Marrow From Patients With Ischemic Heart Disease and Left Ventricular Dysfunction. Circulation Research, 2014, 115, 867-874.	4.5	65
66	Preinfarction Angina Reduces Infarct Size in ST-Elevation Myocardial Infarction Treated With Percutaneous Coronary Intervention. Circulation: Cardiovascular Interventions, 2013, 6, 52-58.	3.9	48
67	Long-term survival in patients with refractory angina. European Heart Journal, 2013, 34, 2683-2688.	2.2	141
68	Of Mice and Men. Circulation Research, 2013, 112, e115-7.	4.5	12
69	Circadian Dependence of Infarct Size and Left Ventricular Function After ST Elevation Myocardial Infarction. Circulation Research, 2012, 110, 105-110.	4.5	124
70	Effect of Transendocardial Delivery of Autologous Bone Marrow Mononuclear Cells on Functional Capacity, Left Ventricular Function, and Perfusion in Chronic Heart Failure. JAMA - Journal of the American Medical Association, 2012, 307, 1717-26.	7.4	424
71	Effect of the Use and Timing of Bone Marrow Mononuclear Cell Delivery on Left Ventricular Function After Acute Myocardial Infarction. JAMA - Journal of the American Medical Association, 2012, 308, 2380-9.	7.4	357
72	Cell Tracking and the Development of Cell-Based Therapies. JACC: Cardiovascular Imaging, 2012, 5, 559-565.	5.3	20

5

#	Article	IF	CITATIONS
73	Factors affecting the turnaround time for manufacturing, testing, and release of cellular therapy products prepared at multiple sites in support of multicenter cardiovascular regenerative medicine protocols: a Cardiovascular Cell Therapy Research Network (CCTRN) study. Transfusion, 2012, 52, 2225-2233.	1.6	5
74	Using Biomaterials to Improve the Efficacy of Cell Therapy Following Acute Myocardial Infarction. Journal of Cardiovascular Translational Research, 2012, 5, 67-72.	2.4	19
75	A randomized study of transendocardial injection of autologous bone marrow mononuclear cells and cell function analysis in ischemic heart failure (FOCUS-HF). American Heart Journal, 2011, 161, 1078-1087.e3.	2.7	167
76	Is the measurement of left ventricular ejection fraction the proper end point for cell therapy trials? An analysis of the effect of bone marrow mononuclear stem cell administration on left ventricular ejection fraction after ST-segment elevation myocardial infarction when evaluated by cardiac magnetic resonance imaging. American Heart Journal, 2011, 162, 671-677.	2.7	34
77	Long-term Follow-up of Patients Undergoing Postconditioning During ST-Elevation Myocardial Infarction. Journal of Cardiovascular Translational Research, 2011, 4, 92-98.	2.4	74
78	Effect of Intracoronary Delivery of Autologous Bone Marrow Mononuclear Cells 2 to 3 Weeks Following Acute Myocardial Infarction on Left Ventricular Function. JAMA - Journal of the American Medical Association, 2011, 306, 2110.	7.4	377
79	Intramyocardial, Autologous CD34+ Cell Therapy for Refractory Angina. Circulation Research, 2011, 109, 428-436.	4.5	433
80	Results of a phase 1, randomized, double-blind, placebo-controlled trial of bone marrow mononuclear stem cell administration in patients following ST-elevation myocardial infarction. American Heart Journal, 2010, 160, 428-434.	2.7	88
81	Multicenter cell processing for cardiovascular regenerative medicine applications: the Cardiovascular Cell Therapy Research Network (CCTRN) experience. Cytotherapy, 2010, 12, 684-691.	0.7	33
82	LateTIME: a phase-II, randomized, double-blinded, placebo-controlled, pilot trial evaluating the safety and effect of administration of bone marrow mononuclear cells 2 to 3 weeks after acute myocardial infarction. Texas Heart Institute Journal, 2010, 37, 412-20.	0.3	50
83	Rationale and design for TIME: A phase II, randomized, double-blind, placebo-controlled pilot trial evaluating the safety and effect of timing of administration of bone marrow mononuclear cells after acute myocardial infarction. American Heart Journal, 2009, 158, 356-363.	2.7	74
84	A Randomized, Double-Blind, Placebo-Controlled, Dose-Escalation Study of Intravenous Adult Human Mesenchymal Stem Cells (Prochymal) After Acute Myocardial Infarction. Journal of the American College of Cardiology, 2009, 54, 2277-2286.	2.8	1,205
85	Cell Therapy for Acute Myocardial Infarction—Where Do We Go From Here?. Journal of Cardiovascular Translational Research, 2008, 1, 64-70.	2.4	3
86	Intramyocardial Transplantation of Autologous CD34 ⁺ Stem Cells for Intractable Angina. Circulation, 2007, 115, 3165-3172.	1.6	516
87	Effect of K + ATP Channel and Adenosine Receptor Blockade During Rest and Exercise in Congestive Heart Failure. Circulation Research, 2007, 100, 1643-1649.	4.5	12
88	A Regional System to Provide Timely Access to Percutaneous Coronary Intervention for ST-Elevation Myocardial Infarction. Circulation, 2007, 116, 721-728.	1.6	438
89	Measurement of myocardial free radical production during exercise using EPR spectroscopy. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 290, H2453-H2458.	3.2	16
90	CPCs as Treatment for Chronic Total Coronary Artery Occlusions. Circulation Research, 2006, 98, .	4.5	0

#	Article	IF	CITATIONS
91	Clinical, Angiographic, and Interventional Follow-Up of Patients With Aortic-Saphenous Vein Graft Connectors. Circulation, 2003, 108, 452-456.	1.6	57
92	Inhibition of NO production increases myocardial blood flow and oxygen consumption in congestive heart failure. American Journal of Physiology - Heart and Circulatory Physiology, 2002, 282, H2278-H2283.	3.2	23
93	Coronary Nitric Oxide Production in Response to Exercise and Endothelium-Dependent Agonists. Circulation, 2000, 101, 2526-2531.	1.6	39
94	Effect of sildenafil on coronary active and reactive hyperemia. American Journal of Physiology - Heart and Circulatory Physiology, 2000, 279, H2319-H2325.	3.2	24
95	Cyclic Nucleotide Phosphodiesterase Type 5 Activity Limits Blood Flow to Hypoperfused Myocardium During Exercise. Circulation, 2000, 102, 2997-3002.	1.6	54
96	Role of K ATP + channels and adenosine in regulation of coronary blood flow in the hypertrophied left ventricle. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H617-H625.	3.2	10
97	Nitroglycerin dilates coronary collateral vessels during exercise after blockade of endogenous NO production. American Journal of Physiology - Heart and Circulatory Physiology, 1999, 277, H918-H923.	3.2	6
98	Regulation of Myocardial Blood Flow by Oxygen Consumption Is Maintained in the Failing Heart During Exercise. Circulation Research, 1999, 84, 401-408.	4.5	31
99	Epithelioid Hemangioendothelioma of the Thoracic Aorta Resulting in Aortic Obstruction and Congestive Heart Failure. Circulation, 1999, 100, 564-565.	1.6	17
100	Nitric Oxide Inhibition Impairs Blood Flow During Exercise in Hearts With a Collateral-Dependent Myocardial Region. Journal of the American College of Cardiology, 1998, 31, 67-74.	2.8	27
101	Effect of β-Adrenergic Receptor Blockade on Blood Flow to Collateral-Dependent Myocardium During Exercise. Circulation, 1995, 91, 1560-1567.	1.6	19