Jianhui Hou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3403733/publications.pdf

Version: 2024-02-01

435 677 70,943 447 131 254 h-index citations g-index papers 453 453 453 19074 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Highly Stable Organic Solar Cells Based on an Ultraviolet-Resistant Cathode Interfacial Layer. CCS Chemistry, 2022, 4, 938-948.	7.8	42
2	Heatingâ€induced aggregation control for efficient sequentialâ€cast organic solar cells. Aggregate, 2022, 3, e104.	9.9	10
3	Lowâ€cost and efficient organic solar cells based on polythiophene―and poly(thiophene) Tj ETQq1 1 0.784314	FrgBT/Ove	erlock 10 Tf 50
4	A Universal Nonhalogenated Polymer Donor for Highâ€Performance Organic Photovoltaic Cells. Advanced Materials, 2022, 34, e2105803.	21.0	53
5	Fluidic Manipulating of Printable Zinc Oxide for Flexible Organic Solar Cells. Advanced Materials, 2022, 34, e2106453.	21.0	62
6	Heavyâ€Atomâ€Free Roomâ€Temperature Phosphorescent Rylene Imide for Highâ€Performing Organic Photovoltaics. Advanced Science, 2022, 9, e2103975.	11,2	12
7	Non-fullerene acceptor pre-aggregates enable high efficiency pseudo-bulk heterojunction organic solar cells. Science China Chemistry, 2022, 65, 373-381.	8.2	20
8	A Highâ€Performance Nonfused Wideâ€Bandgap Acceptor for Versatile Photovoltaic Applications. Advanced Materials, 2022, 34, e2108090.	21.0	71
9	Delicate crystallinity control enables high-efficiency P3HT organic photovoltaic cells. Journal of Materials Chemistry A, 2022, 10, 3418-3429.	10.3	45
10	Tandem Organic Solar Cell with 20.2% Efficiency. Joule, 2022, 6, 171-184.	24.0	584
11	Design of Nearâ€Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for Highâ€Performance Semitransparent Ternary Organic Solar Cells. Angewandte Chemie, 2022, 134, .	2.0	15
12	Efficient interface modification <i>via</i> multi-site coordination for improved efficiency and stability in organic solar cells. Energy and Environmental Science, 2022, 15, 822-829.	30.8	49
13	Design of Nearâ€Infrared Nonfullerene Acceptor with Ultralow Nonradiative Voltage Loss for Highâ€Performance Semitransparent Ternary Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	85
14	Facile solution-processed molybdenum oxide as hole transporting material for efficient organic solar cell. Journal of Energy Chemistry, 2022, 69, 108-114.	12.9	8
15	An asymmetric wide-bandgap acceptor simultaneously enabling highly efficient single-junction and tandem organic solar cells. Energy and Environmental Science, 2022, 15, 1585-1593.	30.8	89
16	A New PEDOT Derivative for Efficient Organic Solar Cell with a Fill Factor of 0.80. Advanced Energy Materials, 2022, 12, .	19.5	52
17	Influence of Large Steric Hinderance Substituent Position on Conformation and Charge Transfer Process for Nonâ€Fused Ring Acceptors. Small Methods, 2022, 6, e2200007.	8.6	20
18	Highâ€Efficiency ITOâ€Free Organic Photovoltaics with Superior Flexibility and Upscalability. Advanced Materials, 2022, 34, e2200044.	21.0	41

#	Article	IF	CITATIONS
19	Terminal alkyl chain tuning of small molecule donor enables optimized morphology and efficient all-small-molecule organic solar cells. Dyes and Pigments, 2022, 200, 110147.	3.7	1
20	A Mixed-Ligand Strategy to Modulate P3HT Regioregularity for High-Efficiency Solar Cells. Macromolecules, 2022, 55, 3078-3086.	4.8	26
21	Terthiophene based non-fused electron acceptors for efficient organic solar cells. Organic Electronics, 2022, 105, 106512.	2.6	17
22	Recent progress in organic solar cells (Part I material science). Science China Chemistry, 2022, 65, 224-268.	8.2	349
23	Mapping the energy level alignment at donor/acceptor interfaces in non-fullerene organic solar cells. Nature Communications, 2022, 13, 2046.	12.8	41
24	Benzo[1,2- <i>b</i> :4,5- <i>b</i> ê²]dithiophene-Based Conjugated Polymers for Highly Efficient Organic Photovoltaics. Accounts of Materials Research, 2022, 3, 540-551.	11.7	19
25	High efficiency and more functions bring a bright future for organic photovoltaic cells. Science Bulletin, 2022, 67, 1300-1303.	9.0	8
26	Recent progress in organic solar cells (Part II device engineering). Science China Chemistry, 2022, 65, 1457-1497.	8.2	157
27	Design of ultranarrow-bandgap acceptors for efficient organic photovoltaic cells and highly sensitive organic photodetectors. Journal of Energy Chemistry, 2022, 72, 388-394.	12.9	10
28	A Thiazole-Based Polymer Donor for Efficient Organic Solar Cells. Transactions of Tianjin University, 2022, 28, 398-405.	6.4	3
29	Low-cost and high-performance poly(thienylene vinylene) derivative donor for efficient versatile organic photovoltaic cells. Nano Energy, 2022, 100, 107463.	16.0	33
30	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie - International Edition, 2022, 61, .	13.8	28
31	Universal Hole Transporting Material <i>via</i> Mutual Doping for Conventional, Inverted, and Blade-Coated Large-Area Organic Solar Cells. Chemistry of Materials, 2022, 34, 6312-6322.	6.7	12
32	A New Polymer Donor Enables Binary Allâ€Polymer Organic Photovoltaic Cells with 18% Efficiency and Excellent Mechanical Robustness. Advanced Materials, 2022, 34, .	21.0	150
33	Organic photovoltaic cells with high efficiencies for both indoor and outdoor applications. Materials Chemistry Frontiers, 2021, 5, 893-900.	5.9	32
34	Recent progress in reducing voltage loss in organic photovoltaic cells. Materials Chemistry Frontiers, 2021, 5, 709-722.	5.9	41
35	Optimizing polymer aggregation and blend morphology for boosting the photovoltaic performance of polymer solar cells via a random terpolymerization strategy. Journal of Energy Chemistry, 2021, 59, 30-37.	12.9	20
36	17% efficiency all-small-molecule organic solar cells enabled by nanoscale phase separation with a hierarchical branched structure. Energy and Environmental Science, 2021, 14, 5903-5910.	30.8	116

#	Article	IF	Citations
37	Design of ultra-high luminescent polymers for organic photovoltaic cells with low energy loss. Chemical Communications, 2021, 57, 9132-9135.	4.1	12
38	Quadrupole Moment Induced Morphology Control Via a Highly Volatile Small Molecule in Efficient Organic Solar Cells. Advanced Functional Materials, 2021, 31, 2010535.	14.9	55
39	Molecular design revitalizes the low-cost PTV-polymer for highly efficient organic solar cells. National Science Review, 2021, 8, nwab031.	9.5	70
40	Suppressing trap states and energy loss by optimizing vertical phase distribution through ternary strategy in organic solar cells. Science China Chemistry, 2021, 64, 599-607.	8.2	22
41	n-doped inorganic molecular clusters as a new type of hole transport material for efficient organic solar cells. Joule, 2021, 5, 646-658.	24.0	76
42	Effect of alkyl side chains of twisted conjugated polymer donors on photovoltaic performance. Polymer, 2021, 218, 123475.	3.8	6
43	Hybrid Perovskite Quantum Dot/Nonâ€Fullerene Molecule Solar Cells with Efficiency Over 15%. Advanced Functional Materials, 2021, 31, 2101272.	14.9	44
44	A New Conjugated Polymer that Enables the Integration of Photovoltaic and Lightâ€Emitting Functions in One Device. Advanced Materials, 2021, 33, e2101090.	21.0	129
45	Suppressing Energetic Disorder Enables Efficient Indoor Organic Photovoltaic Cells With a PTV Derivative. Frontiers in Chemistry, 2021, 9, 684241.	3.6	9
46	Elucidating End-Group Modifications of Carbazole-Based Nonfullerene Acceptors in Indoor Applications for Achieving a PCE of over 20%. ACS Applied Materials & Interfaces, 2021, 13, 26247-26255.	8.0	14
47	Simultaneous Improvement of Efficiency and Stability of Organic Photovoltaic Cells by using a Crossâ€Linkable Fullerene Derivative. Small, 2021, 17, e2101133.	10.0	34
48	Accurate photovoltaic measurement of organic cells for indoor applications. Joule, 2021, 5, 1016-1023.	24.0	52
49	Rational Anode Engineering Enables Progresses for Different Types of Organic Solar Cells. Advanced Energy Materials, 2021, 11, 2100492.	19.5	108
50	Control of aggregated structure of photovoltaic polymers for highâ€efficiency solar cells. Aggregate, 2021, 2, e46.	9.9	60
51	Modulation of terminal alkyl chain length enables over 15% efficiency in small-molecule organic solar cells. Science China Chemistry, 2021, 64, 1200-1207.	8.2	20
52	Probing molecular orientation at bulk heterojunctions by polarization-selective transient absorption spectroscopy. Science China Chemistry, 2021, 64, 1569-1576.	8.2	2
53	A unified description of non-radiative voltage losses in organic solar cells. Nature Energy, 2021, 6, 799-806.	39.5	235
54	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie - International Edition, 2021, 60, 15988-15994.	13.8	60

#	Article	IF	Citations
55	Impact of Electrostatic Interaction on Bulk Morphology in Efficient Donor–Acceptor Photovoltaic Blends. Angewandte Chemie, 2021, 133, 16124-16130.	2.0	11
56	Achieving over 10 % Efficiency in Poly(3â€hexylthiophene)â€Based Organic Solar Cells via Solid Additives. ChemSusChem, 2021, 14, 3607-3613.	6.8	43
57	Miscibility Control by Tuning Electrostatic Interactions in Bulk Heterojunction for Efficient Organic Solar Cells., 2021, 3, 1276-1283.		26
58	Stable and low-photovoltage-loss perovskite solar cells by multifunctional passivation. Nature Photonics, 2021, 15, 681-689.	31.4	255
59	Fluorination strategy enables greatly improved performance for organic solar cells based on polythiophene derivatives. Chinese Chemical Letters, 2021, 32, 2274-2278.	9.0	30
60	<scp>Solutionâ€Processed Silver Nanowire as Flexible Transparent Electrodes in Organic Solar Cells. Chinese Journal of Chemistry, 2021, 39, 2315-2329.</scp>	4.9	33
61	A Thiadiazoleâ€Based Conjugated Polymer with Ultradeep HOMO Level and Strong Electroluminescence Enables 18.6% Efficiency in Organic Solar Cell. Advanced Energy Materials, 2021, 11, 2101705.	19.5	125
62	Nonâ€Fullerene Molecules: Hybrid Perovskite Quantum Dot/Nonâ€Fullerene Molecule Solar Cells with Efficiency Over 15% (Adv. Funct. Mater. 27/2021). Advanced Functional Materials, 2021, 31, 2170196.	14.9	3
63	Completely non-fused electron acceptor with 3D-interpenetrated crystalline structure enables efficient and stable organic solar cell. Nature Communications, 2021, 12, 5093.	12.8	210
64	Progress in Organic Solar Cells: Materials, Physics and Device Engineering. Chinese Journal of Chemistry, 2021, 39, 2607-2625.	4.9	62
65	A Tandem Organic Photovoltaic Cell with 19.6% Efficiency Enabled by Light Distribution Control. Advanced Materials, 2021, 33, e2102787.	21.0	210
66	Singleâ€Junction Organic Photovoltaic Cell with 19% Efficiency. Advanced Materials, 2021, 33, e2102420.	21.0	1,072
67	The performance-stability conundrum of BTP-based organic solar cells. Joule, 2021, 5, 2129-2147.	24.0	133
68	Reduced non-radiative charge recombination enables organic photovoltaic cell approaching 19% efficiency. Joule, 2021, 5, 2408-2419.	24.0	419
69	18.5% Efficiency Organic Solar Cells with a Hybrid Planar/Bulk Heterojunction. Advanced Materials, 2021, 33, e2103091.	21.0	136
70	Squaraine organic crystals with strong dipole effect toward stable lithium-organic batteries. Energy Storage Materials, 2021, 41, 240-247.	18.0	16
71	Optimization of active layer morphology by small-molecule donor design enables over 15% efficiency in small-molecule organic solar cells. Journal of Materials Chemistry A, 2021, 9, 13653-13660.	10.3	21
72	Advances and prospective in thermally stable nonfullerene polymer solar cells. Science China Chemistry, 2021, 64, 1875-1887.	8.2	31

#	Article	IF	Citations
73	Multiâ€Functional Solid Additive Induced Favorable Vertical Phase Separation and Ordered Molecular Packing for Highly Efficient Layerâ€byâ€Layer Organic Solar Cells. Small, 2021, 17, e2103497.	10.0	49
74	Thermoplastic Elastomer Tunes Phase Structure and Promotes Stretchability of Highâ€Efficiency Organic Solar Cells. Advanced Materials, 2021, 33, e2106732.	21.0	101
75	A guest-assisted molecular-organization approach for >17% efficiency organic solar cells using environmentally friendly solvents. Nature Energy, 2021, 6, 1045-1053.	39.5	230
76	Optimized Charge Transport Channel Enables Thick-Film All-Small-Molecule Organic Solar Cells. Energy &	5.1	0
77	Significant influence of doping effect on photovoltaic performance of efficient fullerene-free polymer solar cells. Journal of Energy Chemistry, 2020, 43, 40-46.	12.9	43
78	A ternary organic solar cell with 300 nm thick active layer shows over 14% efficiency. Science China Chemistry, 2020, 63, 21-27.	8.2	72
79	Tuning the Energetic Landscape of Ruddlesden–Popper Perovskite Films for Efficient Solar Cells. ACS Energy Letters, 2020, 5, 39-46.	17.4	47
80	The effect of aggregation behavior on photovoltaic performances in benzodithiophene-thiazolothiazole-based wide band-gap conjugated polymers with side chain position changes. Polymer Chemistry, 2020, 11, 1629-1636.	3.9	30
81	Increased conjugated backbone twisting to improve carbonylated-functionalized polymer photovoltaic performance. Organic Chemistry Frontiers, 2020, 7, 261-266.	4.5	10
82	A chlorinated nonacyclic carbazole-based acceptor affords over 15% efficiency in organic solar cells. Journal of Materials Chemistry A, 2020, 8, 1131-1137.	10.3	65
83	Study of photovoltaic performances for asymmetrical and symmetrical chlorinated thiophene-bridge-based conjugated polymers. Journal of Materials Chemistry C, 2020, 8, 2301-2306.	5.5	15
84	TCNQ as a volatilizable morphology modulator enables enhanced performance in non-fullerene organic solar cells. Journal of Materials Chemistry C, 2020, 8, 44-49.	5.5	16
85	Tailoring and Modifying an Organic Electron Acceptor toward the Cathode Interlayer for Highly Efficient Organic Solar Cells. Advanced Materials, 2020, 32, e1906557.	21.0	109
86	PBDB-T and its derivatives: A family of polymer donors enables over 17% efficiency in organic photovoltaics. Materials Today, 2020, 35, 115-130.	14.2	269
87	Organic photovoltaic cell with 17% efficiency and superior processability. National Science Review, 2020, 7, 1239-1246.	9.5	443
88	Reducing Voltage Losses in the A-DA′D-A Acceptor-Based Organic Solar Cells. CheM, 2020, 6, 2147-2161.	11.7	150
89	Recent advances in non-fullerene organic solar cells: from lab to fab. Chemical Communications, 2020, 56, 14337-14352.	4.1	75
90	Molecular design of a non-fullerene acceptor enables a P3HT-based organic solar cell with 9.46% efficiency. Energy and Environmental Science, 2020, 13, 2864-2869.	30.8	158

#	Article	IF	Citations
91	Recent advances in high-efficiency organic solar cells fabricated by eco-compatible solvents at relatively large-area scale. APL Materials, 2020, 8, .	5.1	45
92	Inorganic Molecular Clusters with Facile Preparation and Neutral pH for Efficient Hole Extraction in Organic Solar Cells. ACS Applied Materials & Solar Cells.	8.0	14
93	Organic Photovoltaic Cells for Indoor Applications: Opportunities and Challenges. ACS Applied Materials & Samp; Interfaces, 2020, 12, 38815-38828.	8.0	126
94	Quantifying $\langle i \rangle V \langle i \rangle \langle sub \rangle occ sub \rangle$ loss induced by alkyl pendants of acceptors in organic solar cells. Journal of Materials Chemistry C, 2020, 8, 12568-12577.	5.5	14
95	Chlorinated Carbonâ€Bridged and Siliconâ€Bridged Carbazoleâ€Based Nonfullerene Acceptors Manifest Synergistic Enhancement in Ternary Organic Solar Cell with Efficiency over 15%. Solar Rrl, 2020, 4, 2000357.	5.8	19
96	PTV-based p-type organic semiconductors: Candidates for low-cost photovoltaic donors with simple synthetic routes. Polymer, 2020, 209, 122900.	3.8	21
97	Robust metal ion-chelated polymer interfacial layer for ultraflexible non-fullerene organic solar cells. Nature Communications, 2020, 11 , 4508.	12.8	141
98	Low Temperature Aggregation Transitions in N3 and Y6 Acceptors Enable Doubleâ€Annealing Method That Yields Hierarchical Morphology and Superior Efficiency in Nonfullerene Organic Solar Cells. Advanced Functional Materials, 2020, 30, 2005011.	14.9	66
99	Reduced Nonradiative Recombination Energy Loss Enabled Efficient Polymer Solar Cells via Tuning Alkyl Chain Positions on Pendent Benzene Units of Polymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 24184-24191.	8.0	7
100	A Novel Wideâ€Bandgap Polymer with Deep Ionization Potential Enables Exceeding 16% Efficiency in Ternary Nonfullerene Polymer Solar Cells. Advanced Functional Materials, 2020, 30, 1910466.	14.9	50
101	Printable SnO2 cathode interlayer with up to 500 nm thickness-tolerance for high-performance and large-area organic solar cells. Science China Chemistry, 2020, 63, 957-965.	8.2	38
102	Efficient charge generation at low energy losses in organic solar cells: a key issues review. Reports on Progress in Physics, 2020, 83, 082601.	20.1	43
103	Organic photovoltaic cells for low light applications offering new scope and orientation. Organic Electronics, 2020, 85, 105798.	2.6	26
104	Impact of the Hole Transport Layer on the Charge Extraction of Ruddlesden–Popper Perovskite Solar Cells. ACS Applied Materials & Description (2008) 12, 29505-29512.	8.0	4
105	Efficient Exciton Dissociation Enabled by the End Group Modification in Non-Fullerene Acceptors. Journal of Physical Chemistry C, 2020, 124, 7691-7698.	3.1	18
106	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie - International Edition, 2020, 59, 9004-9010.	13.8	144
107	15.3% efficiency all-small-molecule organic solar cells enabled by symmetric phenyl substitution. Science China Materials, 2020, 63, 1142-1150.	6.3	140
108	Recent progress in wide bandgap conjugated polymer donors for high-performance nonfullerene organic photovoltaics. Chemical Communications, 2020, 56, 4750-4760.	4.1	94

#	Article	IF	Citations
109	Carbonyl Bridge-Based pâ^'Ï€ Conjugated Polymers as High-Performance Electrodes of Organic Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 18457-18464.	8.0	39
110	Recent Progress in Chlorinated Organic Photovoltaic Materials. Accounts of Chemical Research, 2020, 53, 822-832.	15.6	198
111	Singleâ€Junction Organic Photovoltaic Cells with Approaching 18% Efficiency. Advanced Materials, 2020, 32, e1908205.	21.0	1,407
112	Tuning the Hybridization of Local Exciton and Chargeâ€Transfer States in Highly Efficient Organic Photovoltaic Cells. Angewandte Chemie, 2020, 132, 9089-9095.	2.0	24
113	Efficient and photostable ternary organic solar cells with a narrow band gap non-fullerene acceptor and fullerene additive. Journal of Materials Chemistry A, 2020, 8, 6682-6691.	10.3	37
114	Exceptionally low charge trapping enables highly efficient organic bulk heterojunction solar cells. Energy and Environmental Science, 2020, 13, 2422-2430.	30.8	152
115	Toward Visibly Transparent Organic Photovoltaic Cells Based on a Near-Infrared Harvesting Bulk Heterojunction Blend. ACS Applied Materials & Samp; Interfaces, 2020, 12, 32764-32770.	8.0	40
116	Enhanced photovoltaic effect from naphtho [2,3- <i>c</i>] thiophene-4,9-dione-based polymers through alkyl side chain induced backbone distortion. Journal of Materials Chemistry A, 2020, 8, 14706-14712.	10.3	10
117	Effects on the photovoltaic properties of copolymers with five-membered chalcogen-Ï€-heterocycle bridges. Polymer Chemistry, 2020, 11, 5019-5028.	3.9	13
118	Influence of Covalent and Noncovalent Backbone Rigidification Strategies on the Aggregation Structures of a Wide-Band-Gap Polymer for Photovoltaic Cells. Chemistry of Materials, 2020, 32, 1993-2003.	6.7	36
119	Realizing Ultrahigh Mechanical Flexibility and >15% Efficiency of Flexible Organic Solar Cells via a "Welding―Flexible Transparent Electrode. Advanced Materials, 2020, 32, e1908478.	21.0	216
120	An inorganic molecule-induced electron transfer complex for highly efficient organic solar cells. Journal of Materials Chemistry A, 2020, 8, 5580-5586.	10.3	21
121	Terrylene diimide-based middle-low bandgap electron acceptors for organic photovoltaics. Journal of Materials Chemistry C, 2020, 8, 4441-4446.	5.5	11
122	Over 17% efficiency ternary organic solar cells enabled by two non-fullerene acceptors working in an alloy-like model. Energy and Environmental Science, 2020, 13, 635-645.	30.8	636
123	High-Efficiency Nonfullerene Organic Solar Cells Enabled by 1000 nm Thick Active Layers with a Low Trap-State Density. ACS Applied Materials & Samp; Interfaces, 2020, 12, 18777-18784.	8.0	74
124	Research Progress of Tandem Organic Solar Cells. Acta Chimica Sinica, 2020, 78, 382.	1.4	13
125	Ecoâ€Compatible Solventâ€Processed Organic Photovoltaic Cells with Over 16% Efficiency. Advanced Materials, 2019, 31, e1903441.	21.0	445
126	Wide-gap non-fullerene acceptor enabling high-performance organic photovoltaic cells for indoor applications. Nature Energy, 2019, 4, 768-775.	39.5	407

#	Article	IF	Citations
127	Observing electron transport and percolation in selected bulk heterojunctions bearing fullerene derivatives, non-fullerene small molecules, and polymeric acceptors. Nano Energy, 2019, 64, 103950.	16.0	31
128	Single-Junction Organic Solar Cell Containing a Fluorinated Heptacyclic Carbazole-Based Ladder-Type Acceptor Affords over 13% Efficiency with Solution-Processed Cross-Linkable Fullerene as an Interfacial Layer. ACS Applied Materials & Samp; Interfaces, 2019, 11, 31069-31077.	8.0	31
129	Reduced Nonradiative Energy Loss Caused by Aggregation of Nonfullerene Acceptor in Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1901823.	19.5	72
130	Effects of energy-level offset between a donor and acceptor on the photovoltaic performance of non-fullerene organic solar cells. Journal of Materials Chemistry A, 2019, 7, 18889-18897.	10.3	87
131	Improved Charge Transport and Reduced Nonradiative Energy Loss Enable Over 16% Efficiency in Ternary Polymer Solar Cells. Advanced Materials, 2019, 31, e1902302.	21.0	364
132	Investigating the Trade-Off between Device Performance and Energy Loss in Nonfullerene Organic Solar Cells. ACS Applied Materials & Solar Cells.	8.0	24
133	Modulation of Building Block Size in Conjugated Polymers with D–A Structure for Polymer Solar Cells. Macromolecules, 2019, 52, 7929-7938.	4.8	10
134	Efficiency above 12% for 1 cm ² Flexible Organic Solar Cells with Ag/Cu Grid Transparent Conducting Electrode. Advanced Science, 2019, 6, 1901490.	11.2	58
135	Efficient Organic Solar Cells with a High Openâ€Circuit Voltage of 1.34 V. Chinese Journal of Chemistry, 2019, 37, 1153-1157.	4.9	20
136	1 cm ² Organic Photovoltaic Cells for Indoor Application with over 20% Efficiency. Advanced Materials, 2019, 31, e1904512.	21.0	140
137	Enhanced intermolecular interactions to improve twisted polymer photovoltaic performance. Science China Chemistry, 2019, 62, 370-377.	8.2	29
138	12.88% efficiency in doctor-blade coated organic solar cells through optimizing the surface morphology of a ZnO cathode buffer layer. Journal of Materials Chemistry A, 2019, 7, 212-220.	10.3	70
139	Exquisite modulation of ZnO nanoparticle electron transporting layer for high-performance fullerene-free organic solar cell with inverted structure. Journal of Materials Chemistry A, 2019, 7, 3570-3576.	10.3	58
140	Highly Efficient Fullerene-Free Organic Solar Cells Operate at Near Zero Highest Occupied Molecular Orbital Offsets. Journal of the American Chemical Society, 2019, 141, 3073-3082.	13.7	362
141	Enhanced JSC of P3HT-based non-fullerene polymer solar cells by modulating aggregation effect of P3HT in solution state. Organic Electronics, 2019, 68, 15-21.	2.6	17
142	Vacuum-assisted annealing method for high efficiency printable large-area polymer solar cell modules. Journal of Materials Chemistry C, 2019, 7, 3206-3211.	5.5	27
143	Multifunctional bipyramid-Au@ZnO core–shell nanoparticles as a cathode buffer layer for efficient non-fullerene inverted polymer solar cells with improved near-infrared photoresponse. Journal of Materials Chemistry A, 2019, 7, 2667-2676.	10.3	27
144	Control of Donor–Acceptor Photophysics through Structural Modification of a "Twisting― Push–Pull Molecule. Chemistry of Materials, 2019, 31, 6860-6869.	6.7	15

#	Article	IF	Citations
145	Over 16% efficiency organic photovoltaic cells enabled by a chlorinated acceptor with increased open-circuit voltages. Nature Communications, 2019, 10, 2515.	12.8	1,431
146	Carboxylate-Substituted Polythiophenes for Efficient Fullerene-Free Polymer Solar Cells: The Effect of Chlorination on Their Properties. Macromolecules, 2019, 52, 4464-4474.	4.8	75
147	Interfacial engineering and optical coupling for multicolored semitransparent inverted organic photovoltaics with a record efficiency of over 12%. Journal of Materials Chemistry A, 2019, 7, 15887-15894.	10.3	83
148	Design of wide-bandgap polymers with deeper ionization potential enables efficient ternary non-fullerene polymer solar cells with 13% efficiency. Journal of Materials Chemistry A, 2019, 7, 14153-14162.	10.3	27
149	p-Doped Conducting Polyelectrolyte as an Anode Interlayer Enables High Efficiency for 1 cm ² Printed Organic Solar Cells. ACS Applied Materials & Interfaces, 2019, 11, 20205-20213.	8.0	28
150	Increasing Quantum Efficiency of Polymer Solar Cells with Efficient Exciton Splitting and Long Carrier Lifetime by Molecular Doping at Heterojunctions. ACS Energy Letters, 2019, 4, 1356-1363.	17.4	45
151	Tuning Charge Generation Process of Rylene Imide-Based Solar Cells via Chalcogen-Atom-Annulation. Chemistry of Materials, 2019, 31, 3636-3643.	6.7	22
152	14.7% Efficiency Organic Photovoltaic Cells Enabled by Active Materials with a Large Electrostatic Potential Difference. Journal of the American Chemical Society, 2019, 141, 7743-7750.	13.7	379
153	Enhanced π–π Interactions of Nonfullerene Acceptors by Volatilizable Solid Additives in Efficient Polymer Solar Cells. Advanced Materials, 2019, 31, e1900477.	21.0	99
154	Energy level modulation of ITIC derivatives: Effects on the photodegradation of conventional and inverted organic solar cells. Organic Electronics, 2019, 69, 255-262.	2.6	31
155	Highly fluorescent anthracene derivative as a non-fullerene acceptor in OSCs with small non-radiative energy loss of 0.22ÂeV and high PCEs of over 13%. Journal of Materials Chemistry A, 2019, 7, 10212-10216.	10.3	22
156	Regulating Bulkâ∈Heterojunction Molecular Orientations through Surface Free Energy Control of Holeâ∈Transporting Layers for Highâ∈Performance Organic Solar Cells. Advanced Materials, 2019, 31, e1806921.	21.0	86
157	Significant Effect of Fluorination on Simultaneously Improving Work Function and Transparency of Anode Interlayer for Organic Solar Cells. Advanced Energy Materials, 2019, 9, 1803826.	19.5	21
158	Achieving Over 15% Efficiency in Organic Photovoltaic Cells via Copolymer Design. Advanced Materials, 2019, 31, e1808356.	21.0	388
159	Asymmetric Wideâ€Bandgap Polymers Simultaneously Improve the Openâ€Circuit Voltage and Shortâ€Circuit Current for Organic Photovoltaics. Macromolecular Rapid Communications, 2019, 40, e1800906.	3.9	21
160	Boosting the Performance of Non-Fullerene Organic Solar Cells via Cross-Linked Donor Polymers Design. Macromolecules, 2019, 52, 2214-2221.	4.8	26
161	Recent Advances in Fullereneâ€free Polymer Solar Cells: Materials and Devices. Chinese Journal of Chemistry, 2019, 37, 207-215.	4.9	46
162	A Selfâ€Organized Poly(vinylpyrrolidone)â€Based Cathode Interlayer in Inverted Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2019, 31, e1804657.	21.0	43

#	Article	IF	Citations
163	A Printable Organic Cathode Interlayer Enables over 13% Efficiency for 1-cm2 Organic Solar Cells. Joule, 2019, 3, 227-239.	24.0	193
164	Quenching to the Percolation Threshold in Organic Solar Cells. Joule, 2019, 3, 443-458.	24.0	183
165	Development of Benzodithiophene-Based A-D-A Small Molecules with Different Acceptor End Groups for Efficient Organic Solar Cells. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 76-83.	4.9	8
166	Realizing Green Solvent Processable Non-fullerene Organic Solar Cells by Modulating the Side Groups of Conjugated Polymers. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2019, 35, 1391-1398.	4.9	2
167	Solar Cells: Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent (Adv. Mater. 8/2018). Advanced Materials, 2018, 30, 1870054.	21.0	3
168	Solutionâ€Processable Conjugated Polymers as Anode Interfacial Layer Materials for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800022.	19.5	95
169	Critical Role of Molecular Electrostatic Potential on Charge Generation in Organic Solar Cells. Chinese Journal of Chemistry, 2018, 36, 491-494.	4.9	163
170	A Semitransparent Inorganic Perovskite Film for Overcoming Ultraviolet Light Instability of Organic Solar Cells and Achieving 14.03% Efficiency. Advanced Materials, 2018, 30, e1800855.	21.0	243
171	Stable and Efficient Organoâ€Metal Halide Hybrid Perovskite Solar Cells via π onjugated Lewis Base Polymer Induced Trap Passivation and Charge Extraction. Advanced Materials, 2018, 30, e1706126.	21.0	241
172	The Critical Role of Anode Work Function in Non-Fullerene Organic Solar Cells Unveiled by Counterion-Size-Controlled Self-Doping Conjugated Polymers. Chemistry of Materials, 2018, 30, 1078-1084.	6.7	44
173	A polymer design strategy toward green solvent processed efficient non-fullerene polymer solar cells. Journal of Materials Chemistry A, 2018, 6, 4324-4330.	10.3	48
174	Selfâ€Assembled Quasiâ€3D Nanocomposite: A Novel pâ€Type Hole Transport Layer for High Performance Inverted Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1706403.	14.9	39
175	Organic solar cells based on non-fullerene acceptors. Nature Materials, 2018, 17, 119-128.	27.5	2,315
176	Controlling Blend Morphology for Ultrahigh Current Density in Nonfullerene Acceptor-Based Organic Solar Cells. ACS Energy Letters, 2018, 3, 669-676.	17.4	242
177	Recent Progress in Ternary Organic Solar Cells Based on Nonfullerene Acceptors. Advanced Energy Materials, 2018, 8, 1702814.	19.5	170
178	Surpassing 10% Efficiency Benchmark for Nonfullerene Organic Solar Cells by Scalable Coating in Air from Single Nonhalogenated Solvent. Advanced Materials, 2018, 30, 1705485.	21.0	150
179	The crucial role of intermolecular $\tilde{l}\in \tilde{a}\in \tilde{l}\in \tilde{l}\in$	10.3	26
180	Over 14% Efficiency in Polymer Solar Cells Enabled by a Chlorinated Polymer Donor. Advanced Materials, 2018, 30, e1800868.	21.0	979

#	Article	IF	CITATIONS
181	A Highâ€Efficiency Organic Solar Cell Enabled by the Strong Intramolecular Electron Push–Pull Effect of the Nonfullerene Acceptor. Advanced Materials, 2018, 30, e1707170.	21.0	351
182	Modulating Molecular Orientation Enables Efficient Nonfullerene Small-Molecule Organic Solar Cells. Chemistry of Materials, 2018, 30, 2129-2134.	6.7	157
183	Tunable Electron Donating and Accepting Properties Achieved by Modulating the Steric Hindrance of Side Chains in A-D-A Small-Molecule Photovoltaic Materials. Chemistry of Materials, 2018, 30, 619-628.	6.7	49
184	Environmentally Friendly Solventâ€Processed Organic Solar Cells that are Highly Efficient and Adaptable for the Bladeâ€Coating Method. Advanced Materials, 2018, 30, 1704837.	21.0	173
185	Ternary Nonfullerene Polymer Solar Cells with 12.16% Efficiency by Introducing One Acceptor with Cascading Energy Level and Complementary Absorption. Advanced Materials, 2018, 30, 1703005.	21.0	182
186	Highly efficient planar perovskite solar cells achieved by simultaneous defect engineering and formation kinetic control. Journal of Materials Chemistry A, 2018, 6, 23865-23874.	10.3	37
187	Selenopheno[3,2- <i>b</i>]thiophene-Based Narrow-Bandgap Nonfullerene Acceptor Enabling 13.3% Efficiency for Organic Solar Cells with Thickness-Insensitive Feature. ACS Energy Letters, 2018, 3, 2967-2976.	17.4	139
188	Multi-component non-fullerene acceptors with tunable bandgap structures for efficient organic solar cells. Journal of Materials Chemistry A, 2018, 6, 23644-23649.	10.3	47
189	Design and application of volatilizable solid additives in non-fullerene organic solar cells. Nature Communications, 2018, 9, 4645.	12.8	205
190	Exceeding 14% Efficiency for Solution-Processed Tandem Organic Solar Cells Combining Fullerene- and Nonfullerene-Based Subcells with Complementary Absorption. ACS Energy Letters, 2018, 3, 2566-2572.	17.4	45
191	Enhancing the Photovoltaic Performance of Nonfullerene Acceptors via Conjugated Rotatable End Groups. Advanced Energy Materials, 2018, 8, 1802131.	19.5	24
192	Near-infrared electron acceptors based on terrylene diimides for organic solar cells. Journal of Materials Chemistry A, 2018, 6, 18808-18812.	10.3	20
193	Over 14% Efficiency in Organic Solar Cells Enabled by Chlorinated Nonfullerene Smallâ€Molecule Acceptors. Advanced Materials, 2018, 30, e1800613.	21.0	623
194	Polyamino acid interlayer facilitates electron extraction in narrow band gap fullerene-free organic solar cells with an outstanding short-circuit current. Nano Energy, 2018, 50, 169-175.	16.0	50
195	Measuring Temperature-Dependent Miscibility for Polymer Solar Cell Blends: An Easily Accessible Optical Method Reveals Complex Behavior. Chemistry of Materials, 2018, 30, 3943-3951.	6.7	38
196	Revealing the effects of molecular packing on the performances of polymer solar cells based on A–D–C—A type non-fullerene acceptors. Journal of Materials Chemistry A, 2018, 6, 12132-12141.	10.3	119
197	Fluorination vs. chlorination: a case study on high performance organic photovoltaic materials. Science China Chemistry, 2018, 61, 1328-1337.	8.2	177
198	Heat-Insulating Multifunctional Semitransparent Polymer Solar Cells. Joule, 2018, 2, 1816-1826.	24.0	173

#	Article	IF	Citations
199	A chlorinated low-bandgap small-molecule acceptor for organic solar cells with 14.1% efficiency and low energy loss. Science China Chemistry, 2018, 61, 1307-1313.	8.2	210
200	Conjugated Polymers Containing Sulfonic Acid Fluorene Unit for Achieving Multiple Interfacial Modifications in Fullerene-free Organic Solar Cells. Journal of Physical Chemistry C, 2018, 122, 19328-19337.	3.1	14
201	Optical Gaps of Organic Solar Cells as a Reference for Comparing Voltage Losses. Advanced Energy Materials, 2018, 8, 1801352.	19.5	319
202	The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices. Angewandte Chemie, 2018, 130, 13093-13097.	2.0	8
203	The Crucial Role of Chlorinated Thiophene Orientation in Conjugated Polymers for Photovoltaic Devices. Angewandte Chemie - International Edition, 2018, 57, 12911-12915.	13.8	87
204	Toward Efficient Polymer Solar Cells Processed by a Solutionâ€Processed Layerâ€By‣ayer Approach. Advanced Materials, 2018, 30, e1802499.	21.0	116
205	Over 100â€nmâ€Thick MoO <i></i> > Films with Superior Hole Collection and Transport Properties for Organic Solar Cells. Advanced Energy Materials, 2018, 8, 1800698.	19.5	38
206	Printable MoO <i></i> Anode Interlayers for Organic Solar Cells. Advanced Materials, 2018, 30, e1801718.	21.0	71
207	Design rules for minimizing voltage losses in high-efficiency organic solar cells. Nature Materials, 2018, 17, 703-709.	27.5	701
208	A Highly Efficient Nonâ€Fullerene Organic Solar Cell with a Fill Factor over 0.80 Enabled by a Fineâ€Tuned Holeâ€Transporting Layer. Advanced Materials, 2018, 30, e1801801.	21.0	360
209	Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination. Advanced Materials, 2018, 30, e1803703.	21.0	65
210	A Wide Band Gap Polymer with a Deep Highest Occupied Molecular Orbital Level Enables 14.2% Efficiency in Polymer Solar Cells. Journal of the American Chemical Society, 2018, 140, 7159-7167.	13.7	654
211	Solar Cells: Enhancing the Performance of the Half Tin and Half Lead Perovskite Solar Cells by Suppression of the Bulk and Interfacial Charge Recombination (Adv. Mater. 35/2018). Advanced Materials, 2018, 30, 1870263.	21.0	0
212	Polymer non-fullerene solar cells of vastly different efficiencies for minor side-chain modification: impact of charge transfer, carrier lifetime, morphology and mobility. Journal of Materials Chemistry A, 2018, 6, 12484-12492.	10.3	43
213	Correlating Threeâ€dimensional Morphology With Function in PBDBâ€T:ITâ€M Nonâ€Fullerene Organic Solar Cells. Solar Rrl, 2018, 2, 1800114.	5.8	49
214	Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors. Wuli Huaxue Xuebao/ Acta Physico - Chimica Sinica, 2018, 34, 1202-1210.	4.9	24
215	Molecular Design of Highly Efficient Organic Photovoltaic Materials. , 2018, , .		0
216	Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells. Energy and Environmental Science, 2017, 10, 546-551.	30.8	180

#	Article	IF	Citations
217	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ∈Narrow Band Gap. Angewandte Chemie, 2017, 129, 3091-3095.	2.0	61
218	Design, Synthesis, and Photovoltaic Characterization of a Small Molecular Acceptor with an Ultraâ€Narrow Band Gap. Angewandte Chemie - International Edition, 2017, 56, 3045-3049.	13.8	711
219	New Wide Band Gap Donor for Efficient Fullerene-Free All-Small-Molecule Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 1958-1966.	13.7	260
220	The investigations of two conjugated polymers that show distinctly different photovoltaic properties in polymer solar cells. Organic Electronics, 2017, 44, 42-49.	2.6	7
221	Ternary blend polymer solar cells with two non-fullerene acceptors as acceptor alloy. Dyes and Pigments, 2017, 141, 388-393.	3.7	17
222	New developments in non-fullerene small molecule acceptors for polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 1291-1303.	5.9	194
223	Efficient Fullerene-Free Polymer Solar Cells Based on Alkylthio Substituted Conjugated Polymers. Journal of Physical Chemistry C, 2017, 121, 4825-4833.	3.1	28
224	Investigation of Conjugated Polymers Based on Naphtho[2,3- <i>c</i>]thiophene-4,9-dione in Fullerene-Based and Fullerene-Free Polymer Solar Cells. Macromolecules, 2017, 50, 1453-1462.	4.8	32
225	Fine-Tuned Photoactive and Interconnection Layers for Achieving over 13% Efficiency in a Fullerene-Free Tandem Organic Solar Cell. Journal of the American Chemical Society, 2017, 139, 7302-7309.	13.7	427
226	Significant Influence of the Methoxyl Substitution Position on Optoelectronic Properties and Molecular Packing of Smallâ€Molecule Electron Acceptors for Photovoltaic Cells. Advanced Energy Materials, 2017, 7, 1700183.	19.5	184
227	From Binary to Ternary: Improving the External Quantum Efficiency of Smallâ€Molecule Acceptorâ€Based Polymer Solar Cells with a Minute Amount of Fullerene Sensitization. Advanced Energy Materials, 2017, 7, 1700328.	19.5	54
228	Achieving 12.8% Efficiency by Simultaneously Improving Openâ€Circuit Voltage and Shortâ€Circuit Current Density in Tandem Organic Solar Cells. Advanced Materials, 2017, 29, 1606340.	21.0	100
229	Two Wellâ€Miscible Acceptors Work as One for Efficient Fullereneâ€Free Organic Solar Cells. Advanced Materials, 2017, 29, 1700437.	21.0	157
230	Low band-gap conjugated polymer based on diketopyrrolopyrrole units and its application in organic photovoltaic cells. Journal of Materials Chemistry A, 2017, 5, 10416-10423.	10.3	23
231	Triperylene Hexaimides Based Allâ€6mallâ€Molecule Solar Cells with an Efficiency over 6% and Open Circuit Voltage of 1.04 V. Advanced Energy Materials, 2017, 7, 1601664.	19.5	57
232	Achieving Highâ€Performance Ternary Organic Solar Cells through Tuning Acceptor Alloy. Advanced Materials, 2017, 29, 1603154.	21.0	171
233	Molecular Optimization Enables over 13% Efficiency in Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 7148-7151.	13.7	2,524
234	Strong polymer molecular weight-dependent material interactions: impact on the formation of the polymer/fullerene bulk heterojunction morphology. Journal of Materials Chemistry A, 2017, 5, 13176-13188.	10.3	49

#	Article	IF	Citations
235	Morphology control enables thickness-insensitive efficient nonfullerene polymer solar cells. Materials Chemistry Frontiers, 2017, 1, 2057-2064.	5.9	42
236	Subtle side-chain tuning on terminal groups of small molecule electron acceptors for efficient fullerene-free polymer solar cells. Journal of Materials Chemistry A, 2017, 5, 15175-15182.	10.3	52
237	Potential of Nonfullerene Small Molecules with High Photovoltaic Performance. Chemistry - an Asian Journal, 2017, 12, 2160-2171.	3.3	45
238	Interface design for high-efficiency non-fullerene polymer solar cells. Energy and Environmental Science, 2017, 10, 1784-1791.	30.8	187
239	Achieving Highly Efficient Nonfullerene Organic Solar Cells with Improved Intermolecular Interaction and Openâ€Circuit Voltage. Advanced Materials, 2017, 29, 1700254.	21.0	363
240	Twisted terrylene dyes: synthesis and application in organic solar cells. Organic Chemistry Frontiers, 2017, 4, 811-816.	4.5	21
241	Small-Molecule Acceptor Based on the Heptacyclic Benzodi(cyclopentadithiophene) Unit for Highly Efficient Nonfullerene Organic Solar Cells. Journal of the American Chemical Society, 2017, 139, 4929-4934.	13.7	459
242	Highâ€Efficiency Nonfullerene Organic Solar Cells: Critical Factors that Affect Complex Multiâ€Length Scale Morphology and Device Performance. Advanced Energy Materials, 2017, 7, 1602000.	19.5	232
243	Efficient Semitransparent Organic Solar Cells with Tunable Color enabled by an Ultralowâ€Bandgap Nonfullerene Acceptor. Advanced Materials, 2017, 29, 1703080.	21.0	325
244	Improved Domain Size and Purity Enables Efficient Allâ€Smallâ€Molecule Ternary Solar Cells. Advanced Materials, 2017, 29, 1703777.	21.0	94
245	Design of a New Smallâ€Molecule Electron Acceptor Enables Efficient Polymer Solar Cells with High Fill Factor. Advanced Materials, 2017, 29, 1704051.	21.0	224
246	Spiro-Fused Perylene Diimide Arrays. Journal of the American Chemical Society, 2017, 139, 15914-15920.	13.7	116
247	Influence of the replacement of alkoxyl with alkylthienyl on photovoltaic properties of two small molecule donors for organic solar cells. Science China Chemistry, 2017, 60, 1340-1348.	8.2	23
248	Precise Manipulation of Multilength Scale Morphology and Its Influence on Ecoâ€Friendly Printed Allâ€Polymer Solar Cells. Advanced Functional Materials, 2017, 27, 1702016.	14.9	99
249	Precise Characterization of Performance Metrics of Organic Solar Cells. Small Methods, 2017, 1, 1700159.	8.6	11
250	A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell. Advanced Energy Materials, 2017, 7, 1701164.	19.5	29
251	A triptycene-cored perylenediimide derivative and its application in organic solar cells as a non-fullerene acceptor. New Journal of Chemistry, 2017, 41, 10237-10244.	2.8	6
252	Environmentally-friendly solvent processed fullerene-free organic solar cells enabled by screening halogen-free solvent additives. Science China Materials, 2017, 60, 697-706.	6.3	33

#	Article	IF	CITATIONS
253	Role of Polymer Segregation on the Mechanical Behavior of All-Polymer Solar Cell Active Layers. ACS Applied Materials & Company: Interfaces, 2017, 9, 43886-43892.	8.0	40
254	Organic Solar Cells: A Switchable Interconnecting Layer for High Performance Tandem Organic Solar Cell (Adv. Energy Mater. 21/2017). Advanced Energy Materials, 2017, 7, .	19.5	0
255	Ternary Polymer Solar Cells based on Two Acceptors and One Donor for Achieving 12.2% Efficiency. Advanced Materials, 2017, 29, 1604059.	21.0	333
256	Control of Mesoscale Morphology and Photovoltaic Performance in Diketopyrrolopyrroleâ€Based Small Band Gap Terpolymers. Advanced Energy Materials, 2017, 7, 1601138.	19.5	59
257	Efficient Charge Transfer and Fineâ€Tuned Energy Level Alignment in a THFâ€Processed Fullereneâ€Free Organic Solar Cell with 11.3% Efficiency. Advanced Materials, 2017, 29, 1604241.	21.0	305
258	Probing film-depth-related light harvesting in polymer solar cells via plasma etching. AIP Advances, 2017, 7, .	1.3	15
259	Dependence of Excitedâ€State Properties of a Lowâ€Bandgap Photovoltaic Copolymer on Sideâ€Chain Substitution and Solvent. ChemSusChem, 2016, 9, 1623-1633.	6.8	6
260	Fullereneâ€Free Polymer Solar Cells with over 11% Efficiency and Excellent Thermal Stability. Advanced Materials, 2016, 28, 4734-4739.	21.0	1,698
261	A Wide Bandgap Polymer with Strong π–π Interaction for Efficient Fullereneâ€Free Polymer Solar Cells. Advanced Energy Materials, 2016, 6, 1600742.	19.5	76
262	Greenâ€Solventâ€Processed Allâ€Polymer Solar Cells Containing a Perylene Diimideâ€Based Acceptor with an Efficiency over 6.5%. Advanced Energy Materials, 2016, 6, 1501991.	19.5	157
263	Effectively Improving Extinction Coefficient of Benzodithiophene and Benzodithiophenedioneâ€based Photovoltaic Polymer by Grafting Alkylthio Functional Groups. Chemistry - an Asian Journal, 2016, 11, 2650-2655.	3.3	11
264	The Importance of End Groups for Solutionâ€Processed Smallâ€Molecule Bulkâ€Heterojunction Photovoltaic Cells. ChemSusChem, 2016, 9, 973-980.	6.8	8
265	A Bifunctional Interlayer Material for Modifying Both the Anode and Cathode in Highly Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 434-439.	21.0	85
266	Perylene Diimide Trimers Based Bulk Heterojunction Organic Solar Cells with Efficiency over 7%. Advanced Energy Materials, 2016, 6, 1600060.	19.5	111
267	Breaking the 10% Efficiency Barrier in Organic Photovoltaics: Morphology and Device Optimization of Wellâ€Known PBDTTT Polymers. Advanced Energy Materials, 2016, 6, 1502529.	19.5	285
268	Effect of solvent additive on active layer morphologies and photovoltaic performance of polymer solar cells based on PBDTTT-C-T/PC71BM. RSC Advances, 2016, 6, 51924-51931.	3.6	11
269	Efficient fullerene-based and fullerene-free polymer solar cells using two wide band gap thiophene-thiazolothiazole-based photovoltaic materials. Journal of Materials Chemistry A, 2016, 4, 9511-9518.	10.3	34
270	A Fluorinated Polythiophene Derivative with Stabilized Backbone Conformation for Highly Efficient Fullerene and Non-Fullerene Polymer Solar Cells. Macromolecules, 2016, 49, 2993-3000.	4.8	141

#	Article	IF	Citations
271	Green-solvent-processable organic solar cells. Materials Today, 2016, 19, 533-543.	14.2	252
272	Enhancing the power conversion efficiency of polymer solar cells to 9.26% by a synergistic effect of fluoro and carboxylate substitution. Journal of Materials Chemistry A, 2016, 4, 8097-8104.	10.3	39
273	Highly Efficient Fullereneâ€Free Polymer Solar Cells Fabricated with Polythiophene Derivative. Advanced Materials, 2016, 28, 9416-9422.	21.0	303
274	Energyâ€Level Modulation of Smallâ€Molecule Electron Acceptors to Achieve over 12% Efficiency in Polymer Solar Cells. Advanced Materials, 2016, 28, 9423-9429.	21.0	1,307
275	Organic Solar Cells: High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars (Small 37/2016). Small, 2016, 12, 5102-5102.	10.0	4
276	Achieving 10.5% efficiency for inverted polymer solar cells by modifying the ZnO cathode interlayer with phenols. Journal of Materials Chemistry A, 2016, 4, 16824-16829.	10.3	39
277	High Performance Organic Solar Cells Processed by Blade Coating in Air from a Benign Food Additive Solution. Chemistry of Materials, 2016, 28, 7451-7458.	6.7	91
278	High Efficiency Organic Solar Cells Achieved by the Simultaneous Plasmonâ€Optical and Plasmonâ€Electrical Effects from Plasmonic Asymmetric Modes of Gold Nanostars. Small, 2016, 12, 5200-5207.	10.0	73
279	Realizing 11.3% efficiency in fullerene-free polymer solar cells by device optimization. Science China Chemistry, 2016, 59, 1574-1582.	8.2	78
280	A high performance three-dimensional thiophene-annulated perylene dye as an acceptor for organic solar cells. Chemical Communications, 2016, 52, 11500-11503.	4.1	40
281	Manipulation of Domain Purity and Orientational Ordering in High Performance All-Polymer Solar Cells. Chemistry of Materials, 2016, 28, 6178-6185.	6.7	87
282	Effect of fluorination and symmetry on the properties of polymeric photovoltaic materials based on an asymmetric building block. RSC Advances, 2016, 6, 90051-90060.	3.6	23
283	Design and Synthesis of a Low Bandgap Small Molecule Acceptor for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 8283-8287.	21.0	421
284	Structural Transitions in Solution-Cast Films of a New AABB Type Thiophene Copolymer. Macromolecules, 2016, 49, 8653-8660.	4.8	5
285	Fullerene-free polymer solar cell based on a polythiophene derivative with an unprecedented energy loss of less than 0.5 eV. Journal of Materials Chemistry A, 2016, 4, 18043-18049.	10.3	88
286	A Novel pH Neutral Self-Doped Polymer for Anode Interfacial Layer in Efficient Polymer Solar Cells. Macromolecules, 2016, 49, 8126-8133.	4.8	69
287	Highâ€Efficiency Polymer Solar Cells Enabled by Environmentâ€Friendly Singleâ€Solvent Processing. Advanced Energy Materials, 2016, 6, 1502177.	19.5	91
288	Over 11% Efficiency in Tandem Polymer Solar Cells Featured by a Lowâ€Bandâ€Gap Polymer with Fineâ€Tuned Properties. Advanced Materials, 2016, 28, 5133-5138.	21.0	144

#	Article	IF	Citations
289	New Electron Acceptor Derived from Fluorene: Synthesis and Its Photovoltaic Properties. Journal of Physical Chemistry C, 2016, 120, 13390-13397.	3.1	19
290	Molecular Design of Benzodithiophene-Based Organic Photovoltaic Materials. Chemical Reviews, 2016, 116, 7397-7457.	47.7	998
291	Correlations among Chemical Structure, Backbone Conformation, and Morphology in Two Highly Efficient Photovoltaic Polymer Materials. Macromolecules, 2016, 49, 120-126.	4.8	59
292	PBDT-TSR: a highly efficient conjugated polymer for polymer solar cells with a regioregular structure. Journal of Materials Chemistry A, 2016, 4, 1708-1713.	10.3	75
293	Fluorinated and non-fluorinated conjugated polymers showing different photovoltaic properties in polymer solar cells with PFNBr interlayers. Organic Electronics, 2016, 28, 178-183.	2.6	21
294	Improving the open-circuit voltage of alkylthio-substituted photovoltaic polymers via post-oxidation. Organic Electronics, 2016, 28, 39-46.	2.6	14
295	Dialkylthio Substitution: An Effective Method to Modulate the Molecular Energy Levels of 2D-BDT Photovoltaic Polymers. ACS Applied Materials & Samp; Interfaces, 2016, 8, 3575-3583.	8.0	43
296	Highly efficient two-dimensional conjugated benzodithiophene-based photovoltaic polymers. Scientia Sinica Chimica, 2016, 46, 925-944.	0.4	0
297	A Largeâ€Bandgap Conjugated Polymer for Versatile Photovoltaic Applications with High Performance. Advanced Materials, 2015, 27, 4655-4660.	21.0	882
298	Manipulating Aggregation and Molecular Orientation in Allâ€Polymer Photovoltaic Cells. Advanced Materials, 2015, 27, 6046-6054.	21.0	264
299	Synergic Effects of Randomly Aligned SWCNT Mesh and Selfâ€Assembled Molecule Layer for Highâ€Performance, Lowâ€Bandgap, Polymer Solar Cells with Fast Charge Extraction. Advanced Materials Interfaces, 2015, 2, 1500324.	3.7	22
300	The Effect of Processing Additives on Energetic Disorder in Highly Efficient Organic Photovoltaics: A Case Study on PBDTTTâ€Câ€T:PC ₇₁ BM. Advanced Materials, 2015, 27, 3868-3873.	21.0	46
301	Molecular Design and Application of a Photovoltaic Polymer with Improved Optical Properties and Molecular Energy Levels. Macromolecules, 2015, 48, 3493-3499.	4.8	52
302	Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Polymer International, 2015, 64, 957-962.	3.1	45
303	Conjugated Polymer Photovoltaic Materials. Lecture Notes in Quantum Chemistry II, 2015, , 195-239.	0.3	3
304	An Easily Accessible Cathode Buffer Layer for Achieving Multiple High Performance Polymer Photovoltaic Cells. Journal of Physical Chemistry C, 2015, 119, 27322-27329.	3.1	30
305	Perovskite-polymer hybrid solar cells with near-infrared external quantum efficiency over 40%. Science China Materials, 2015, 58, 953-960.	6.3	41
306	Toward efficient non-fullerene polymer solar cells: Selection of donor polymers. Organic Electronics, 2015, 17, 295-303.	2.6	41

#	Article	IF	Citations
307	Realizing over 10% efficiency in polymer solar cell by device optimization. Science China Chemistry, 2015, 58, 248-256.	8.2	311
308	Optimization of side chains in alkylthiothiophene-substituted benzo[1,2-b:4,5-b′]dithiophene-based photovoltaic polymers. Polymer Chemistry, 2015, 6, 2752-2760.	3.9	37
309	Highly Efficient Photovoltaic Polymers Based on Benzodithiophene and Quinoxaline with Deeper HOMO Levels. Macromolecules, 2015, 48, 5172-5178.	4.8	104
310	MoOx and V2Ox as hole and electron transport layers through functionalized intercalation in normal and inverted organic optoelectronic devices. Light: Science and Applications, 2015, 4, e273-e273.	16.6	169
311	Enhanced Efficiency in Fullerene-Free Polymer Solar Cell by Incorporating Fine-designed Donor and Acceptor Materials. ACS Applied Materials & Samp; Interfaces, 2015, 7, 9274-9280.	8.0	110
312	Molecular design toward efficient polymer solar cells processed by green solvents. Polymer Chemistry, 2015, 6, 4089-4095.	3.9	41
313	A universal halogen-free solvent system for highly efficient polymer solar cells. Journal of Materials Chemistry A, 2015, 3, 12723-12729.	10.3	97
314	Influence of the alkyl substitution position on photovoltaic properties of 2D-BDT-based conjugated polymers. Science China Materials, 2015, 58, 213-222.	6.3	21
315	2D-Conjugated Benzodithiophene-Based Polymer Acceptor: Design, Synthesis, Nanomorphology, and Photovoltaic Performance. Macromolecules, 2015, 48, 7156-7163.	4.8	70
316	Enhanced efficiency of polymer photovoltaic cells via the incorporation of a water-soluble naphthalene diimide derivative as a cathode interlayer. Journal of Materials Chemistry C, 2015, 3, 9565-9571.	5.5	60
317	Rational selection of solvents and fine tuning of morphologies toward highly efficient polymer solar cells fabricated using green solvents. RSC Advances, 2015, 5, 69567-69572.	3.6	37
318	A crosslinked fullerene matrix doped with an ionic fullerene as a cathodic buffer layer toward high-performance and thermally stable polymer and organic metallohalide perovskite solar cells. Journal of Materials Chemistry A, 2015, 3, 20382-20388.	10.3	35
319	An electron acceptor based on indacenodithiophene and 1,1-dicyanomethylene-3-indanone for fullerene-free organic solar cells. Journal of Materials Chemistry A, 2015, 3, 1910-1914.	10.3	137
320	Highly Efficient Tandem Polymer Solar Cells with a Photovoltaic Response in the Visible Light Range. Advanced Materials, 2015, 27, 1189-1194.	21.0	130
321	Toward reliable and accurate evaluation of polymer solar cells based on low band gap polymers. Journal of Materials Chemistry C, 2015, 3, 564-569.	5.5	32
322	Over 1.1 eV Workfunction Tuning of Cesium Intercalated Metal Oxides for Functioning as Both Electron and Hole Transport Layers in Organic Optoelectronic Devices. Advanced Functional Materials, 2014, 24, 7348-7356.	14.9	44
323	Impacts of side chain and excess energy on the charge photogeneration dynamics of low-bandgap copolymer-fullerene blends. Journal of Chemical Physics, 2014, 140, 084903.	3.0	16
324	Solar Cells: A Starâ€6haped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells (Adv. Mater. 30/2014). Advanced Materials, 2014, 26, 5224-5224.	21.0	3

#	Article	IF	Citations
325	Selecting a Donor Polymer for Realizing Favorable Morphology in Efficient Nonâ€fullerene Acceptorâ€based Solar Cells. Small, 2014, 10, 4658-4663.	10.0	76
326	Solution-processable perylene diimide based star-shaped small molecule acceptor: synthesis and photovoltaic properties. Proceedings of SPIE, 2014, , .	0.8	4
327	Solutionâ€Processed Rhenium Oxide: A Versatile Anode Buffer Layer for High Performance Polymer Solar Cells with Enhanced Light Harvest. Advanced Energy Materials, 2014, 4, 1300884.	19.5	71
328	Enhanced Photovoltaic Performance by Modulating Surface Composition in Bulk Heterojunction Polymer Solar Cells Based on PBDTTTâ€Câ€T/PC ₇₁ BM. Advanced Materials, 2014, 26, 4043-4049.	21.0	203
329	A diketopyrrolopyrrole molecule end-capped with a furan-2-carboxylate moiety: the planarity of molecular geometry and photovoltaic properties. Journal of Materials Chemistry A, 2014, 2, 6589.	10.3	42
330	Quantification of Nano―and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, <i>J</i> _{sc} , and FF in Polymer:Fullerene Solar Cells. Advanced Materials, 2014, 26, 4234-4241.	21.0	127
331	Layerâ€byâ€Layer Solutionâ€Processed Lowâ€Bandgap Polymerâ€PC ₆₁ BM Solar Cells with High Efficiency. Advanced Energy Materials, 2014, 4, 1301349.	19.5	57
332	Synergistic Effect of Fluorination on Molecular Energy Level Modulation in Highly Efficient Photovoltaic Polymers. Advanced Materials, 2014, 26, 1118-1123.	21.0	386
333	Molecular Design and Morphology Control Towards Efficient Polymer Solar Cells Processed using Nonâ€aromatic and Nonâ€chlorinated Solvents. Advanced Materials, 2014, 26, 2744-2749.	21.0	95
334	Efficient polymer solar cells with a solution-processed and thermal annealing-free RuO ₂ anode buffer layer. Journal of Materials Chemistry A, 2014, 2, 1318-1324.	10.3	64
335	Bay-linked perylene bisimides as promising non-fullerene acceptors for organic solar cells. Chemical Communications, 2014, 50, 1024-1026.	4.1	290
336	Binary additives synergistically boost the efficiency of all-polymer solar cells up to 3.45%. Energy and Environmental Science, 2014, 7, 1351-1356.	30.8	224
337	Influence of the backbone conformation of conjugated polymers on morphology and photovoltaic properties. Polymer Chemistry, 2014, 5, 1976-1981.	3.9	48
338	Improved Efficiency and Stability of Polymer Solar Cells Utilizing Two-Dimensional Reduced Graphene Oxide: Graphene Oxide Nanocomposites as Hole-Collection Material. ACS Applied Materials & Samp; Interfaces, 2014, 6, 22334-22342.	8.0	42
339	Trapping Light with a Nanostructured CeO _x /Al Back Electrode for Highâ€Performance Polymer Solar Cells. Advanced Materials Interfaces, 2014, 1, 1400197.	3.7	33
340	Photovoltaics: Quantification of Nano―and Mesoscale Phase Separation and Relation to Donor and Acceptor Quantum Efficiency, <i>J</i> _{sc} , and FF in Polymer:Fullerene Solar Cells (Adv.) Tj ETQq0 0 0	rgHTo/Ove	erlock 10 Tf 5
341	Conductive Water/Alcohol-Soluble Neutral Fullerene Derivative as an Interfacial Layer for Inverted Polymer Solar Cells with High Efficiency. ACS Applied Materials & Samp; Interfaces, 2014, 6, 14189-14195.	8.0	22
342	Side Chain Selection for Designing Highly Efficient Photovoltaic Polymers with 2D-Conjugated Structure. Macromolecules, 2014, 47, 4653-4659.	4.8	259

#	Article	IF	Citations
343	Towards high-efficiency non-fullerene organic solar cells: Matching small molecule/polymer donor/acceptor. Organic Electronics, 2014, 15, 2270-2276.	2.6	53
344	Enhanced Performance of Polymer Solar Cells using PEDOT:PSS Doped with Fe ₃ O ₄ Magnetic Nanoparticles Aligned by an External Magnetostatic Field as an Anode Buffer Layer. ACS Applied Materials & Samp; Interfaces, 2014, 6, 13201-13208.	8.0	30
345	A Polythiophene Derivative with Superior Properties for Practical Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 5880-5885.	21.0	205
346	Investigations of the Conjugated Polymers Based on Dithienogermole (DTG) Units for Photovoltaic Applications. Macromolecules, 2014, 47, 5558-5565.	4.8	34
347	Highly Efficient 2D-Conjugated Benzodithiophene-Based Photovoltaic Polymer with Linear Alkylthio Side Chain. Chemistry of Materials, 2014, 26, 3603-3605.	6.7	531
348	Molecular Design toward Highly Efficient Photovoltaic Polymers Based on Two-Dimensional Conjugated Benzodithiophene. Accounts of Chemical Research, 2014, 47, 1595-1603.	15.6	667
349	Understanding How Processing Additives Tune the Nanoscale Morphology of High Efficiency Organic Photovoltaic Blends: From Casting Solution to Spun ast Thin Film. Advanced Functional Materials, 2014, 24, 6647-6657.	14.9	39
350	An Easy and Effective Method to Modulate Molecular Energy Level of the Polymer Based on Benzodithiophene for the Application in Polymer Solar Cells. Advanced Materials, 2014, 26, 2089-2095.	21.0	137
351	A Starâ€Shaped Perylene Diimide Electron Acceptor for Highâ€Performance Organic Solar Cells. Advanced Materials, 2014, 26, 5137-5142.	21.0	390
352	Efficient Polymer Solar Cells Based on Poly(3-hexylthiophene) and Indene–C ₆₀ Bisadduct Fabricated with Non-halogenated Solvents. ACS Applied Materials & Interfaces, 2014, 6, 8190-8198.	8.0	86
353	Ultrathin Polyaniline-based Buffer Layer for Highly Efficient Polymer Solar Cells with Wide Applicability. Scientific Reports, 2014, 4, 6570.	3.3	69
354	High performance polymer solar cells with as-prepared zirconium acetylacetonate film as cathode buffer layer. Scientific Reports, 2014, 4, 4691.	3.3	165
355	Efficient Polymer Solar Cells Based on Benzothiadiazole and Alkylphenyl Substituted Benzodithiophene with a Power Conversion Efficiency over 8%. Advanced Materials, 2013, 25, 4944-4949.	21.0	306
356	[6,6]â€Phenylâ€C ₆₁ â€Butyric Acid Dimethylamino Ester as a Cathode Buffer Layer for Highâ€Performance Polymer Solar Cells. Advanced Energy Materials, 2013, 3, 1569-1574.	19.5	77
357	Lowâ€Temperature Solutionâ€Processed Hydrogen Molybdenum and Vanadium Bronzes for an Efficient Holeâ€Transport Layer in Organic Electronics. Advanced Materials, 2013, 25, 2051-2055.	21.0	269
358	Competition between morphological attributes in the thermal annealing and additive processing of polymer solar cells. Journal of Materials Chemistry C, 2013, 1, 5023.	5.5	44
359	Construction of Planar and Bulk Integrated Heterojunction Polymer Solar Cells Using Cross-Linkable D-A Copolymer. ACS Applied Materials & Early; Interfaces, 2013, 5, 6591-6597.	8.0	25
360	A Potential Perylene Diimide Dimerâ€Based Acceptor Material for Highly Efficient Solutionâ€Processed Nonâ€Fullerene Organic Solar Cells with 4.03% Efficiency. Advanced Materials, 2013, 25, 5791-5797.	21.0	444

#	Article	IF	CITATIONS
361	Remove the Residual Additives toward Enhanced Efficiency with Higher Reproducibility in Polymer Solar Cells. Journal of Physical Chemistry C, 2013, 117, 14920-14928.	3.1	210
362	Amine group functionalized fullerene derivatives as cathode buffer layers for high performance polymer solar cells. Journal of Materials Chemistry A, 2013, 1, 9624.	10.3	69
363	Stabilization of the film morphology in polymer: Fullerene heterojunction solar cells with photocrosslinkable bromineâ€functionalized lowâ€bandgap copolymers. Journal of Polymer Science Part A, 2013, 51, 3123-3131.	2.3	24
364	Enhanced charge extraction in organic solar cells through electron accumulation effects induced by metal nanoparticles. Energy and Environmental Science, 2013, 6, 3372.	30.8	95
365	Solution-processed indacenodithiophene-based small molecule for bulk heterojunction solar cells. Journal of Materials Chemistry A, 2013, 1, 14214.	10.3	49
366	A Hyperbranched Conjugated Polymer as the Cathode Interlayer for Highâ€Performance Polymer Solar Cells. Advanced Materials, 2013, 25, 6889-6894.	21.0	101
367	Enhanced Photovoltaic Performance of Diketopyrrolopyrrole (DPP)-Based Polymers with Extended π Conjugation. Journal of Physical Chemistry C, 2013, 117, 9550-9557.	3.1	103
368	Application of Bis-PCBM in Polymer Solar Cells with Improved Voltage. Journal of Physical Chemistry C, 2013, 117, 25360-25366.	3.1	61
369	High-Performance Polymer Solar Cells with Solution-Processed and Environmentally Friendly CuO _{<i>x</i>} Anode Buffer Layer. ACS Applied Materials & Samp; Interfaces, 2013, 5, 10658-10664.	8.0	77
370	Poly(ethylene glycol) modified [60]fullerene as electron buffer layer for high-performance polymer solar cells. Applied Physics Letters, 2013, 102, .	3.3	39
371	Side-chain effects on the solution-phase conformations and charge photogeneration dynamics of low-bandgap copolymers. Journal of Chemical Physics, 2013, 139, 124904.	3.0	25
372	Mechanism of Primary Charge Photogeneration in Polyfluorene Copolymer/Fullerene Blends and Influence of the Donor/Acceptor Lowest Unoccupied Molecular Orbital Level Offset. Journal of Physical Chemistry C, 2013, 117, 735-749.	3.1	24
373	A round robin study of polymer solar cells and small modules across China. Solar Energy Materials and Solar Cells, 2013, 117, 382-389.	6.2	10
374	Benzodifuran-alt-thienothiophene based low band gap copolymers: substituent effects on their molecular energy levels and photovoltaic properties. Polymer Chemistry, 2013, 4, 3047.	3.9	45
375	PDTâ€Sâ€T: A New Polymer with Optimized Molecular Conformation for Controlled Aggregation and ⟨i⟩Ï∈⟨ i⟩–⟨i⟩Ï∈⟨ i⟩ Stacking and Its Application in Efficient Photovoltaic Devices. Advanced Materials, 2013, 25, 3449-3455.	21.0	190
376	Manipulating Backbone Structure to Enhance Low Band Gap Polymer Photovoltaic Performance. Advanced Energy Materials, 2013, 3, 930-937.	19.5	62
377	Molecular Design toward Efficient Polymer Solar Cells with High Polymer Content. Journal of the American Chemical Society, 2013, 135, 8464-8467.	13.7	86
378	Active Layer Materials for Organic Solar Cells. Green Energy and Technology, 2013, , 17-42.	0.6	34

#	Article	IF	Citations
379	A thieno[3,4-f]isoindole-5,7-dione based copolymer for polymer solar cells. Polymer Chemistry, 2013, 4, 536-541.	3.9	15
380	Subnanosecond charge photogeneration and recombination in polyfluorene copolymer-fullerene solar cell: Effects of electric field. Optics Express, 2013, 21, A241.	3.4	2
381	Room-temperature solution-processed molybdenum oxide as a hole transport layer with Ag nanoparticles for highly efficient inverted organic solar cells. Journal of Materials Chemistry A, 2013, 1, 6614.	10.3	89
382	Influence of D/A Ratio on Photovoltaic Performance of a Highly Efficient Polymer Solar Cell System. Advanced Materials, 2012, 24, 6536-6541.	21.0	229
383	Semi-transparent polymer solar cells with 6% PCE, 25% average visible transmittance and a color rendering index close to 100 for power generating window applications. Energy and Environmental Science, 2012, 5, 9551.	30.8	323
384	Synthesis and application of dithieno[2,3-d:2′,3′-d′]benzo[1,2-b:4,5-b′]dithiophene in conjugated poly Journal of Materials Chemistry, 2012, 22, 21362.	ymer. 6.7	65
385	Conjugated and Nonconjugated Substitution Effect on Photovoltaic Properties of Benzodifuran-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 6923-6929.	4.8	129
386	From Binary to Ternary Solvent: Morphology Fineâ€ŧuning of D/A Blends in PDPP3Tâ€based Polymer Solar Cells. Advanced Materials, 2012, 24, 6335-6341.	21.0	288
387	Application of Two-Dimensional Conjugated Benzo[1,2- <i>b</i> :4,5- <i>b</i> à€²]dithiophene in Quinoxaline-Based Photovoltaic Polymers. Macromolecules, 2012, 45, 3032-3038.	4.8	154
388	Synthesis of a 4,8-dialkoxy-benzo[1,2-b:4,5-b′]difuran unit and its application in photovoltaic polymer. Chemical Communications, 2012, 48, 3318.	4.1	105
389	Design, synthesis and photovoltaic properties of a new D–π–A polymer with extended π-bridge units. Journal of Materials Chemistry, 2012, 22, 21024.	6.7	65
390	Poly(thieno[3,2- <i>b</i>)thiophene- <i>alt</i> -bithiazole): A D–A Copolymer Donor Showing Improved Photovoltaic Performance with Indene-C ₆₀ Bisadduct Acceptor. Macromolecules, 2012, 45, 6930-6937.	4.8	71
391	Design, Application, and Morphology Study of a New Photovoltaic Polymer with Strong Aggregation in Solution State. Macromolecules, 2012, 45, 9611-9617.	4.8	664
392	Molecular energy level modulation by changing the position of electron-donating side groups. Journal of Materials Chemistry, 2012, 22, 5700.	6.7	63
393	High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy and Environmental Science, 2012, 5, 7943.	30.8	400
394	Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells. Advanced Materials, 2012, 24, 3046-3052.	21.0	654
395	Improving the Ordering and Photovoltaic Properties by Extending <i>Ï€</i> –Conjugated Area of Electronâ€Donating Units in Polymers with Dâ€A Structure. Advanced Materials, 2012, 24, 3383-3389.	21.0	298
396	Highâ€Performance Inverted Polymer Solar Cells with Solutionâ€Processed Titanium Chelate as Electronâ€Collecting Layer on ITO Electrode. Advanced Materials, 2012, 24, 1476-1481.	21.0	305

#	Article	IF	CITATIONS
397	Progress of highly efficient polymer photovoltaic materials. Scientia Sinica Chimica, 2012, 42, 702-714.	0.4	0
398	Sulfonyl: a new application of electron-withdrawing substituent in highly efficient photovoltaic polymer. Chemical Communications, 2011, 47, 8904.	4.1	147
399	PBDTTTZ: A Broad Band Gap Conjugated Polymer with High Photovoltaic Performance in Polymer Solar Cells. Macromolecules, 2011, 44, 4035-4037.	4.8	159
400	Benzo $[1,2$ -b:4,5-bâ \in 2] dithiophene-based conjugated polymers: band gap and energy level control and their application in polymer solar cells. Polymer Chemistry, 2011, 2, 2453.	3.9	272
401	Synthesis of a polythieno [3,4-b] thiophene derivative with a low-lying HOMO level and its application in polymer solar cells. Chemical Communications, 2011, 47, 8850.	4.1	57
402	Biindene-C60 adducts for the application as acceptor in polymer solar cells with higher open-circuit-voltage. Solar Energy Materials and Solar Cells, 2011, 95, 899-903.	6.2	30
403	Synthesis and photovoltaic properties of biindene-C70 monoadduct as acceptor in polymer solar cells. Solar Energy Materials and Solar Cells, 2011, 95, 1762-1766.	6.2	20
404	A <i>p</i> â€Type Quantum Dot/Organic Donor:Acceptor Solar ell Structure for Extended Spectral Response. Advanced Energy Materials, 2011, 1, 528-533.	19.5	21
405	Replacing Alkoxy Groups with Alkylthienyl Groups: A Feasible Approach To Improve the Properties of Photovoltaic Polymers. Angewandte Chemie - International Edition, 2011, 50, 9697-9702.	13.8	926
406	Effect of Carbon Chain Length in the Substituent of PCBMâ€like Molecules on Their Photovoltaic Properties. Advanced Functional Materials, 2010, 20, 1480-1487.	14.9	137
407	Highly Efficient Tandem Polymer Photovoltaic Cells. Advanced Materials, 2010, 22, 380-383.	21.0	320
408	Silicon Atom Substitution Enhances Interchain Packing in a Thiopheneâ€Based Polymer System. Advanced Materials, 2010, 22, 371-375.	21.0	352
409	A Polybenzo[1,2â€ <i>b</i> :4,5â€ <i>b</i> ′]dithiophene Derivative with Deep HOMO Level and Its Application in Highâ€Performance Polymer Solar Cells. Angewandte Chemie - International Edition, 2010, 49, 1500-1503.	n 13.8	479
410	Synthesis and photovoltaic properties of polythiophene derivatives with side chains containing C ₆₀ end group. Journal of Applied Polymer Science, 2010, 115, 532-539.	2.6	11
411	Indeneâ^C ₆₀ Bisadduct: A New Acceptor for High-Performance Polymer Solar Cells. Journal of the American Chemical Society, 2010, 132, 1377-1382.	13.7	1,151
412	Vertical Phase Separation in Poly(3â€hexylthiophene): Fullerene Derivative Blends and its Advantage for Inverted Structure Solar Cells. Advanced Functional Materials, 2009, 19, 1227-1234.	14.9	650
413	Efficient Polymer Solar Cells with Thin Active Layers Based on Alternating Polyfluorene Copolymer/Fullerene Bulk Heterojunctions. Advanced Materials, 2009, 21, 4238-4242.	21.0	242
414	Fluorescence and sensitization performance of phenylene-vinylene-substituted polythiophene. Science Bulletin, 2009, 54, 1669-1676.	9.0	10

#	Article	IF	Citations
415	Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics, 2009, 3, 649-653.	31.4	3,015
416	Synthesis of a Low Band Gap Polymer and Its Application in Highly Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2009, 131, 15586-15587.	13.7	688
417	Low band gap dithieno[3,2-b:2′,3′-d]silole-containing polymers, synthesis, characterization and photovoltaic application. Chemical Communications, 2009, , 5570.	4.1	128
418	An Easy and Effective Method To Modulate Molecular Energy Level of Poly(3-alkylthiophene) for High-Voc Polymer Solar Cells. Macromolecules, 2009, 42, 9217-9219.	4.8	96
419	Poly[4,4-bis(2-ethylhexyl)cyclopenta[2,1- <i>b</i> ;3,4- <i>b′</i>]dithiophene-2,6-diyl- <i>alt</i> -2,1,3-benzoselenadiazole-4,7-diyl], a New Low Band Gap Polymer in Polymer Solar Cells. Journal of Physical Chemistry C, 2009, 113, 1601-1605.	3.1	103
420	Improvement of Photoluminescent and Photovoltaic Properties of Poly(thienylene vinylene) by Carboxylate Substitution. Macromolecules, 2009, 42, 4377-4380.	4.8	85
421	Synthesis and Photovoltaic Properties of Two Benzo[1,2- <i>b</i> b:3,4- <i>bâ\in2</i>]dithiophene-Based Conjugated Polymers. Journal of Physical Chemistry C, 2009, 113, 21202-21207.	3.1	80
422	Bandgap and Molecular Level Control of the Low-Bandgap Polymers Based on 3,6-Dithiophen-2-yl-2,5-dihydropyrrolo[3,4- <i>c</i>) pyrrole-1,4-dione toward Highly Efficient Polymer Solar Cells. Macromolecules, 2009, 42, 6564-6571.	4.8	459
423	Branched poly(<i>p</i> pi>â€phenylenevinylene): Synthesis, optical and electrochemical properties. Journal of Applied Polymer Science, 2008, 110, 1002-1008.	2.6	4
424	Effects of Solvent Mixtures on the Nanoscale Phase Separation in Polymer Solar Cells. Advanced Functional Materials, 2008, 18, 1783-1789.	14.9	645
425	Bandgap and Molecular Energy Level Control of Conjugated Polymer Photovoltaic Materials Based on Benzo[1,2- <i>b</i> :4,5- <i>b</i> :倲]dithiophene. Macromolecules, 2008, 41, 6012-6018.	4.8	723
426	Synthesis, Characterization, and Photovoltaic Properties of a Low Band Gap Polymer Based on Silole-Containing Polythiophenes and 2,1,3-Benzothiadiazole. Journal of the American Chemical Society, 2008, 130, 16144-16145.	13.7	1,092
427	A new n-type low bandgap conjugated polymer P-co-CDT: synthesis and excellent reversible electrochemical and electrochromic properties. Chemical Communications, 2008, , 6034.	4.1	64
428	Synthesis and Photovoltaic Properties of a Donorâ^'Acceptor Double-Cable Polythiophene with High Content of C60Pendant. Macromolecules, 2007, 40, 1868-1873.	4.8	92
429	A Novel n-Type Conjugated Polymer DOCN-PPV:  Synthesis, Optical, and Electrochemical Properties. Macromolecules, 2006, 39, 8889-8891.	4.8	66
430	Hybrid nanocrystal/polymer solar cells based on tetrapod-shaped CdSexTe1â^'xnanocrystals. Nanotechnology, 2006, 17, 4041-4047.	2.6	158
431	Enhanced performance of white polymer light-emitting diodes using polymer blends as hole-transporting layers. Applied Physics Letters, 2006, 89, 153501.	3.3	41
432	Poly[3-(5-octyl-thienylene-vinyl)-thiophene]: A side-chain conjugated polymer with very broad absorption band. Chemical Communications, 2006, , 871.	4.1	79

#	Article	IF	CITATIONS
433	Synthesis and Photovoltaic Properties of Two-Dimensional Conjugated Polythiophenes with Bi(thienylenevinylene) Side Chains. Journal of the American Chemical Society, 2006, 128, 4911-4916.	13.7	759
434	Branched Poly(thienylene vinylene)s with Absorption Spectra Covering the Whole Visible Region. Macromolecules, 2006, 39, 4657-4662.	4.8	125
435	Synthesis and Absorption Spectra of Poly(3-(phenylenevinyl)thiophene)s with Conjugated Side Chains. Macromolecules, 2006, 39, 594-603.	4.8	185
436	Synthesis, characterization and photovoltaic properties of poly{ $[1\hat{a}\in^2,4\hat{a}\in^2$ -bis-(thienyl-vinyl)]-2-methoxy-5-($2\hat{a}\in^2$ -ethylhexyloxy)-1,4-phenylene-vinylene}. Synthetic Metals, 2006, 156, 276-281.	3.9	16
437	Thinner-film plastic photovoltaic cells based on different C60 derivatives. Polymers for Advanced Technologies, 2006, 17, 500-505.	3.2	11
438	Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties. Journal of Polymer Science Part A, 2006, 44, 1279-1290.	2.3	40
439	Synthesis and properties of polythiophenes with conjugated side-chains containing carbon–carbon double and triple bonds. Journal of Polymer Science Part A, 2006, 44, 2206-2214.	2.3	46
440	Electroluminescent and Photovoltaic Properties of the Crosslinkable Poly(phenylene vinylene) Derivative with Side Chains Containing Vinyl Groups. Macromolecular Chemistry and Physics, 2005, 206, 1311-1318.	2.2	24
441	Synthesis and photovoltaic properties of the copolymers of 2-methoxy-5-(2′-ethylhexyloxy)-1,4-phenylene vinylene and 2,5-thienylene-vinylene. Synthetic Metals, 2005, 150, 297-304.	3.9	59
442	Synthesis of regioregular side-chain conjugated polythiophene and its application in photovoltaic solar cells. Synthetic Metals, 2005, 153, 93-96.	3.9	40
443	Squaraine Organic Crystals with Strong Dipole Effect Toward Stable Lithium-Organic Batteries. SSRN Electronic Journal, 0, , .	0.4	O
444	Molecular design and device engineering enable over 19% efficiencies in organic solar cells. , 0, , .		0
445	Material Design for Fullerene-free Polymer Solar Cells with Over 14% Efficiency. , 0, , .		О
446	Over 13% Efficiency in Blade-coated Organic Solar Cells. , 0, , .		0
447	Doubleâ€Cable Conjugated Polymers with Pendent Nearâ€Infrared Electron Acceptors for Singleâ€Component Organic Solar Cells. Angewandte Chemie, 0, , .	2.0	0