
Simon V Avery

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3402077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Application of microfluidic systems in modelling impacts of environmental structure on stress-sensing by individual microbial cells. Computational and Structural Biotechnology Journal, 2022, 20, 128-138.	4.1	0
2	Discovery of Natural Products With Antifungal Potential Through Combinatorial Synergy. Frontiers in Microbiology, 2022, 13, 866840.	3.5	12
3	Inkjet 3D Printing of Polymers Resistant to Fungal Attachment. Bio-protocol, 2021, 11, e4016.	0.4	1
4	Potentiated inhibition of Trichoderma virens and other environmental fungi by new biocide combinations. Applied Microbiology and Biotechnology, 2021, 105, 2867-2875.	3.6	2
5	Evolving challenges and strategies for fungal control in the food supply chain. Fungal Biology Reviews, 2021, 36, 15-26.	4.7	63
6	Influence of environmental and genetic factors on food protein quality: current knowledge and future directions. Current Opinion in Food Science, 2021, 40, 94-101.	8.0	8
7	Microbial Metal Resistance within Structured Environments Is Inversely Related to Environmental Pore Size. Applied and Environmental Microbiology, 2021, 87, e0100521.	3.1	1
8	Method for RNA extraction and transcriptomic analysis of single fungal spores. MethodsX, 2020, 7, 100760.	1.6	3
9	Top-Down Characterization of an Antimicrobial Sanitizer, Leading From Quenchers of Efficacy to Mode of Action. Frontiers in Microbiology, 2020, 11, 575157.	3.5	5
10	Repurposing Nonantifungal Approved Drugs for Synergistic Targeting of Fungal Pathogens. ACS Infectious Diseases, 2020, 6, 2950-2958.	3.8	15
11	The Preservative Sorbic Acid Targets Respiration, Explaining the Resistance of Fermentative Spoilage Yeast Species. MSphere, 2020, 5, .	2.9	14
12	Soil aggregates by design: Manufactured aggregates with defined microbial composition for interrogating microbial activities in soil microhabitats. Soil Biology and Biochemistry, 2020, 148, 107870.	8.8	19
13	Discovery of (meth)acrylate polymers that resist colonization by fungi associated with pathogenesis and biodeterioration. Science Advances, 2020, 6, eaba6574.	10.3	29
14	Weak Acid Resistance A (WarA), a Novel Transcription Factor Required for Regulation of Weak-Acid Resistance and Spore-Spore Heterogeneity in Aspergillus niger. MSphere, 2020, 5, .	2.9	13
15	The Biotechnology of Quorn Mycoprotein: Past, Present and Future Challenges. Grand Challenges in Biology and Biotechnology, 2020, , 59-79.	2.4	38
16	Challenges and approaches in assessing the interplay between microorganisms and their physical micro-environments. Computational and Structural Biotechnology Journal, 2020, 18, 2860-2866.	4.1	9
17	Epoxy–amine oligomers from terpenes with applications in synergistic antifungal treatments. Journal of Materials Chemistry B, 2019, 7, 5222-5229.	5.8	16
18	Microbes associated with fresh produce: Sources, types and methods to reduce spoilage and contamination. Advances in Applied Microbiology, 2019, 107, 29-82.	2.4	46

#	Article	IF	CITATIONS
19	The fungal threat to global food security. Fungal Biology, 2019, 123, 555-557.	2.5	67
20	Large expert-curated database for benchmarking document similarity detection in biomedical literature search. Database: the Journal of Biological Databases and Curation, 2019, 2019, .	3.0	15
21	Heterologous Expression of a Novel Drug Transporter from the Malaria Parasite Alters Resistance to Quinoline Antimalarials. Scientific Reports, 2018, 8, 2464.	3.3	26
22	Novel Combinations of Agents Targeting Translation That Synergistically Inhibit Fungal Pathogens. Frontiers in Microbiology, 2018, 9, 2355.	3.5	23
23	Extreme Osmotolerance and Halotolerance in Food-Relevant Yeasts and the Role of Glycerol-Dependent Cell Individuality. Frontiers in Microbiology, 2018, 9, 3238.	3.5	29
24	The next generation fungal diversity researcher. Fungal Biology Reviews, 2017, 31, 124-130.	4.7	10
25	Mitochondrial Ferredoxin Determines Vulnerability of Cells to Copper Excess. Cell Chemical Biology, 2017, 24, 1228-1237.e3.	5.2	41
26	The Candidate Antimalarial Drug MMV665909 Causes Oxygen-Dependent mRNA Mistranslation and Synergizes with Quinoline-Derived Antimalarials. Antimicrobial Agents and Chemotherapy, 2017, 61, .	3.2	9
27	Metal-Based Combinations That Target Protein Synthesis by Fungi. Advances in Microbial Physiology, 2017, 70, 105-121.	2.4	8
28	Open Source Drug Discovery with the Malaria Box Compound Collection for Neglected Diseases and Beyond. PLoS Pathogens, 2016, 12, e1005763.	4.7	244
29	The antimalarial drug primaquine targets Fe–S cluster proteins and yeast respiratory growth. Redox Biology, 2016, 7, 21-29.	9.0	30
30	Phenotypic heterogeneity in fungi: Importance and methodology. Fungal Biology Reviews, 2016, 30, 176-184.	4.7	52
31	Novel, Synergistic Antifungal Combinations that Target Translation Fidelity. Scientific Reports, 2015, 5, 16700.	3.3	22
32	The antimalarial drug quinine interferes with serotonin biosynthesis and action. Scientific Reports, 2015, 4, 3618.	3.3	11
33	Phenotypic heterogeneity is a selected trait in natural yeast populations subject to environmental stress. Environmental Microbiology, 2014, 16, 1729-1740.	3.8	88
34	Genes involved in the induction of liver growth by peroxisome proliferators. Toxicology Research, 2014, 3, 315-323.	2.1	1
35	Population heterogeneity and dynamics in starter culture and lag phase adaptation of the spoilage yeast Zygosaccharomyces bailii to weak acid preservatives. International Journal of Food Microbiology, 2014, 181, 40-47.	4.7	39
36	Oxidative Stress and Cell Function. , 2014, , 89-112.		6

Oxidative Stress and Cell Function. , 2014, , 89-112. 36

#	Article	IF	CITATIONS
37	Cell Wall Perturbation Sensitizes Fungi to the Antimalarial Drug Chloroquine. Antimicrobial Agents and Chemotherapy, 2013, 57, 3889-3896.	3.2	29
38	Reply to "Chloroquine, an Antifungal but Also a Fertility Drugâ€: Antimicrobial Agents and Chemotherapy, 2013, 57, 5787-5787.	3.2	0
39	The essential iron-sulfur protein Rli1 is an important target accounting for inhibition of cell growth by reactive oxygen species. Molecular Biology of the Cell, 2012, 23, 3582-3590.	2.1	73
40	Quinine interactions with tryptophan and tyrosine in malaria patients, and implications for quinine responses in the clinical setting. Journal of Antimicrobial Chemotherapy, 2012, 67, 2501-2505.	3.0	11
41	Heterogeneous Expression of the Virulence-Related Adhesin Epa1 between Individual Cells and Strains of the Pathogen Candida glabrata. Eukaryotic Cell, 2012, 11, 141-150.	3.4	40
42	Chromate toxicity and the role of sulfur. Metallomics, 2011, 3, 1119.	2.4	45
43	Molecular targets of oxidative stress. Biochemical Journal, 2011, 434, 201-210.	3.7	376
44	Candida argentea sp. nov., a copper and silver resistant yeast species. Fungal Biology, 2011, 115, 909-918.	2.5	17
45	Chromate-induced sulfur starvation and mRNA mistranslation in yeast are linked in a common mechanism of Cr toxicity. Toxicology in Vitro, 2010, 24, 1764-1767.	2.4	22
46	Actin-Mediated Endocytosis Limits Intracellular Cr Accumulation and Cr Toxicity during Chromate Stress. Toxicological Sciences, 2009, 111, 437-446.	3.1	28
47	The Antimalarial Drug Quinine Disrupts Tat2p-mediated Tryptophan Transport and Causes Tryptophan Starvation. Journal of Biological Chemistry, 2009, 284, 17968-17974.	3.4	41
48	Methionine sulphoxide reductases protect iron–sulphur clusters from oxidative inactivation in yeast. Microbiology (United Kingdom), 2009, 155, 612-623.	1.8	24
49	Cadmium induces a heterogeneous and caspase-dependent apoptotic response in Saccharomyces cerevisiae. Apoptosis: an International Journal on Programmed Cell Death, 2008, 13, 811-821.	4.9	51
50	Transcriptâ€specific translational regulation in the unfolded protein response of <i>Saccharomyces cerevisiae</i> . FEBS Letters, 2008, 582, 503-509.	2.8	30
51	Modulation of Chaperone Gene Expression in Mutagenized <i>Saccharomyces cerevisiae</i> Strains Developed for Recombinant Human Albumin Production Results in Increased Production of Multiple Heterologous Proteins. Applied and Environmental Microbiology, 2008, 74, 7759-7766.	3.1	72
52	Application of the comprehensive set of heterozygous yeast deletion mutants to elucidate the molecular basis of cellular chromium toxicity. Genome Biology, 2007, 8, R268.	9.6	57
53	Phenotypic heterogeneity can enhance rare-cell survival in â€~stress-sensitive' yeast populations. Molecular Microbiology, 2007, 63, 507-520.	2.5	96
54	Glutathione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells. Molecular Microbiology, 2007, 66, 699-712.	2.5	65

#	Article	IF	CITATIONS
55	Microbial cell individuality and the underlying sources of heterogeneity. Nature Reviews Microbiology, 2006, 4, 577-587.	28.6	460
56	Phenotypic diversity and fungal fitness. The Mycologist, 2005, 19, 74-80.	0.4	3
57	Oxidative protein damage causes chromium toxicity in yeast. Microbiology (United Kingdom), 2005, 151, 1939-1948.	1.8	100
58	Cell individuality: the bistability of competence development. Trends in Microbiology, 2005, 13, 459-462.	7.7	33
59	Genetic Dissection of the Phospholipid Hydroperoxidase Activity of Yeast Gpx3 Reveals Its Functional Importance. Journal of Biological Chemistry, 2004, 279, 46652-46658.	3.4	68
60	Iron Blocks the Accumulation and Activity of Tetracyclines in Bacteria. Antimicrobial Agents and Chemotherapy, 2004, 48, 1892-1894.	3.2	14
61	Copper-induced oxidative stress inSaccharomyces cerevisiaetargets enzymes of the glycolytic pathway. FEBS Letters, 2004, 556, 253-259.	2.8	102
62	Cell cycle―and ageâ€dependent activation of Sod1p drives the formation of stress resistant cell subpopulations within clonal yeast cultures. Molecular Microbiology, 2003, 50, 857-870.	2.5	44
63	Genome-Wide Screening of Saccharomyces cerevisiae To Identify Genes Required for Antibiotic Insusceptibility of Eukaryotes. Antimicrobial Agents and Chemotherapy, 2003, 47, 676-681.	3.2	38
64	Phagocytosis Affects Biguanide Sensitivity of Acanthamoeba spp. Antimicrobial Agents and Chemotherapy, 2002, 46, 2069-2076.	3.2	13
65	The Yeast Glutaredoxins Are Active as Glutathione Peroxidases. Journal of Biological Chemistry, 2002, 277, 16712-16717.	3.4	127
66	Phenotypic heterogeneity: differential stress resistance among individual cells of the yeast Saccharomyces cerevisiae. Microbiology (United Kingdom), 2002, 148, 345-351.	1.8	96
67	Metal toxicity in yeasts and the role of oxidative stress. Advances in Applied Microbiology, 2001, 49, 111-142.	2.4	130
68	Antioxidant Functions Required for Insusceptibility of Saccharomyces cerevisiae to Tetracycline Antibiotics. Antimicrobial Agents and Chemotherapy, 2001, 45, 2939-2942.	3.2	7
69	Saccharomyces cerevisiae Expresses Three Phospholipid Hydroperoxide Glutathione Peroxidases. Journal of Biological Chemistry, 2001, 276, 33730-33735.	3.4	174
70	Destabilized green fluorescent protein for monitoring dynamic changes in yeast gene expression with flow cytometry. Yeast, 2000, 16, 1313-1323.	1.7	144
71	Flow Cytometry for Determination of the Efficacy of Contact Lens Disinfecting Solutions against Acanthamoeba spp. Applied and Environmental Microbiology, 2000, 66, 1057-1061.	3.1	45
72	Copper/Zinc-Superoxide Dismutase Is Required for Oxytetracycline Resistance of <i>Saccharomyces cerevisiae</i> . Journal of Bacteriology, 2000, 182, 76-80.	2.2	20

#	Article	IF	CITATIONS
73	Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grownSaccharomyces cerevisiae. FEMS Microbiology Letters, 1999, 176, 379-386.	1.8	41
74	Stimulation of Strontium Accumulation in Linoleate-Enriched <i>Saccharomyces cerevisiae</i> Is a Result of Reduced Sr ²⁺ Efflux. Applied and Environmental Microbiology, 1999, 65, 1191-1197.	3.1	14
75	Flow cytometric investigation of heterogeneous copper-sensitivity in asynchronously grown Saccharomyces cerevisiae. FEMS Microbiology Letters, 1999, 176, 379-386.	1.8	0
76	Enrichment with a polyunsaturated fatty acid enhances the survival ofSaccharomyces cerevisiaein the presence of tributyltin. FEMS Microbiology Letters, 1998, 167, 321-326.	1.8	17
77	Manganese toxicity towards Saccharomyces cerevisiae  : Dependence on intracellular and extracellular magnesium concentrations. Applied Microbiology and Biotechnology, 1998, 49, 751-757.	3.6	39
78	Microalgal Removal of Organic and Inorganic Metal Species from Aqueous Solution. , 1998, , 55-72.		9
79	Effects of biocides on Acanthamoeba castellanii as measured by flow cytometry and plaque assay. Journal of Antimicrobial Chemotherapy, 1997, 40, 227-233.	3.0	33
80	Influence of altered plasma membrane fatty acid composition on cesium transport characteristics and toxicity in <i>Saccharomyces cerevisiae</i> . Canadian Journal of Microbiology, 1997, 43, 954-962.	1.7	12
81	Manganese uptake and toxicity in magnesium-supplemented and unsupplemented Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1997, 47, 180-184.	3.6	41
82	Relationship between cadmium sensitivity and degree of plasma membrane fatty acid unsaturation in Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 1997, 48, 539-545.	3.6	59
83	Induction of lipid peroxidation during heavy metal stress in Saccharomyces cerevisiae and influence of plasma membrane fatty acid unsaturation. Applied and Environmental Microbiology, 1997, 63, 2971-2976.	3.1	221
84	Fate of caesium in the environment: Distribution between the abiotic and biotic components of aquatic and terrestrial ecosystems. Journal of Environmental Radioactivity, 1996, 30, 139-171.	1.7	167
85	Oxygen-dependent low-temperature Â12 (n6)-desaturase induction and alteration of fatty acid composition in Acanthamoeba castellanii. Microbiology (United Kingdom), 1996, 142, 2213-2221.	1.8	8
86	Copper toxicity towards Saccharomyces cerevisiae: dependence on plasma membrane fatty acid composition. Applied and Environmental Microbiology, 1996, 62, 3960-3966.	3.1	183
87	Temperature-dependent changes in plasma-membrane lipid order and the phagocytotic activity of the amoeba Acanthamoeba castellanii are closely correlated. Biochemical Journal, 1995, 312, 811-816.	3.7	70
88	Influence of plasma membrane fluidity on phagocytotic activity in Acanthamoeba castellanii. Biochemical Society Transactions, 1995, 23, 409S-409S.	3.4	2
89	Characterisation of caesium transport in the microalga <i>Chlorella salina</i> . Biochemical Society Transactions, 1995, 23, 468S-468S.	3.4	5
90	Caesium accumulation by microorganisms: uptake mechanisms, cation competition, compartmentalization and toxicity. Journal of Industrial Microbiology, 1995, 14, 76-84.	0.9	118

#	Article	IF	CITATIONS
91	Microbial interactions with caesium—implications for biotechnology. Journal of Chemical Technology and Biotechnology, 1995, 62, 3-16.	3.2	32
92	Quantification and Characterization of Phagocytosis in the Soil Amoeba Acanthamoeba castellanii by Flow Cytometry. Applied and Environmental Microbiology, 1995, 61, 1124-1132.	3.1	42
93	Low-temperature-induced adaptations in fatty acid metabolism of Acanthamoeba castellanii cultures of different ages: relationship to changes in cell division, oxygen uptake and phagocytotic activity. Microbiology (United Kingdom), 1994, 140, 2423-2431.	1.8	12
94	Changes in Membrane Fatty Acid Composition and ?12-Desaturase Activity during Growth of Acanthamoeba castellanii in Batch Culture. Journal of Eukaryotic Microbiology, 1994, 41, 396-401.	1.7	23
95	Growth-dependent changes of Δ12-desaturase activity and unsaturation of membrane fatty acids in <i>Acanthamoeba castellanii</i> . Biochemical Society Transactions, 1994, 22, 200S-200S.	3.4	1
96	Low temperature-induced adaptations in lipid metabolism and physiological function in Acanthamoeba castellanii cultures of different ages. Biochemical Society Transactions, 1994, 22, 257S-257S.	3.4	1
97	Biosorption of tributyltin and other organotin compounds by cyanobacteria and microalgae. Applied Microbiology and Biotechnology, 1993, 39, 812-817.	3.6	54
98	Salt-stimulation of caesium accumulation in the euryhaline green microalga Chlorella salina: potential relevance to the development of a biological Cs-removal process. Journal of General Microbiology, 1993, 139, 2239-2244.	2.3	25
99	Transport kinetics, cation inhibition and intracellular location of accumulated caesium in the green microalga Chlorella salina. Journal of General Microbiology, 1993, 139, 827-834.	2.3	33
100	Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Applied and Environmental Microbiology, 1993, 59, 2851-2856.	3.1	128
101	Replacement of cellular potassium by caesium in Chlorella emersonii: differential sensitivity of photoautotrophic and chemoheterotrophic growth. Journal of General Microbiology, 1992, 138, 69-76.	2.3	41
102	Caesium transport in the cyanobacteriumAnabaena variabilis: Kinetics and evidence for uptake via ammonium transport system(s). FEMS Microbiology Letters, 1992, 95, 253-258.	1.8	22
103	Mechanisms of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Applied and Environmental Microbiology, 1992, 58, 3883-3889.	3.1	114
104	Toxicity of organotins towards cyanobacterial photosynthesis and nitrogen fixation. FEMS Microbiology Letters, 1991, 84, 205-210.	1.8	19
105	Caesium accumulation and interactions with other monovalent cations in the cyanobacterium Synechocystis PCC 6803. Microbiology (United Kingdom), 1991, 137, 405-413.	1.8	87

106 Microbial Cell Individuality. , 0, , 221-243.