Frank Szulzewsky

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/340203/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	OUP accepted manuscript. Neuro-Oncology, 2021, 23, S4-S15.	1.2	3
2	Leveraging the replicationâ€competent avianâ€like sarcoma virus/tumor virus receptorâ€A system for modeling human gliomas. Glia, 2021, 69, 2059-2076.	4.9	7
3	C11orf95-RELA fusion drives aberrant gene expression through the unique epigenetic regulation for ependymoma formation. Acta Neuropathologica Communications, 2021, 9, 36.	5.2	14
4	YAP1 and its fusion proteins in cancer initiation, progression and therapeutic resistance. Developmental Biology, 2021, 475, 205-221.	2.0	62
5	Platelet-derived growth factor beta is a potent inflammatory driver in paediatric high-grade glioma. Brain, 2021, 144, 53-69.	7.6	43
6	Anti–PD-L1 antibody direct activation of macrophages contributes to a radiation-induced abscopal response in glioblastoma. Neuro-Oncology, 2020, 22, 639-651.	1.2	34
7	Glioma-derived IL-33 orchestrates an inflammatory brain tumor microenvironment that accelerates glioma progression. Nature Communications, 2020, 11, 4997.	12.8	109
8	Comparison of tumor-associated YAP1 fusions identifies a recurrent set of functions critical for oncogenesis. Genes and Development, 2020, 34, 1051-1064.	5.9	48
9	Phenotypic characterization with somatic genome editing and gene transfer reveals the diverse oncogenicity of ependymoma fusion genes. Acta Neuropathologica Communications, 2020, 8, 203.	5.2	8
10	A kinase-deficient NTRK2 splice variant predominates in glioma and amplifies several oncogenic signaling pathways. Nature Communications, 2020, 11, 2977.	12.8	26
11	Fusing the Genetic Landscape of Infantile High-Grade Gliomas. Cancer Discovery, 2020, 10, 904-906.	9.4	1
12	Genetic driver mutations introduced in identical cellâ€ofâ€origin in murine glioblastoma reveal distinct immune landscapes but similar response to checkpoint blockade. Glia, 2020, 68, 2148-2166.	4.9	28
13	Mathematical modeling of PDGF-driven glioma reveals the dynamics of immune cells infiltrating into tumors. Neoplasia, 2020, 22, 323-332.	5.3	8
14	Multimodal singleâ€cell analysis reveals distinct radioresistant stemâ€like and progenitor cell populations in murine glioma. Glia, 2020, 68, 2486-2502.	4.9	8
15	Cooperation of oncolytic virotherapy with VEGF-neutralizing antibody treatment in IDH wildtype glioblastoma depends on MMP9. Neuro-Oncology, 2019, 21, 1607-1609.	1.2	9
16	TMOD-09. TUMOR ASSOCIATED MACROPHAGE DYNAMICS IN PEDIATRIC HIGH-GRADE GLIOMAS. Neuro-Oncology, 2019, 21, ii123-ii123.	1.2	0
17	Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain, 2019, 142, 3834-3851.	7.6	50
18	Human Mesenchymal glioblastomas are characterized by an increased immune cell presence compared to Proneural and Classical tumors. Oncolmmunology, 2019, 8, e1655360.	4.6	76

FRANK SZULZEWSKY

#	Article	IF	CITATIONS
19	PDTM-11. GAINING INSIGHTS INTO THE INFLAMMATORY MICROENVIRONMENT OF PEDIATRIC HIGH-GRADE GLIOMAS USING GEMMs AND PATIENT SAMPLES. Neuro-Oncology, 2019, 21, vi189-vi189.	1.2	0
20	TMOD-30. CHARACTERIZATION OF AN ALTERNATIVELY SPLICED NTRK2 VARIANT IN GLIOMAS. Neuro-Oncology, 2019, 21, vi269-vi269.	1.2	0
21	GENE-04. THE ONCOGENIC FUNCTIONS OF YAP1-GENE FUSIONS CAN BE INHIBITED BY DISRUPTION OF YAP1-TEAD INTERACTION. Neuro-Oncology, 2019, 21, vi98-vi98.	1.2	1
22	Arming oHSV with ULBP3 drives abscopal immunity in lymphocyte-depleted glioblastoma. JCI Insight, 2019, 4, .	5.0	24
23	Increased <i>HOXA5</i> expression provides a selective advantage for gain of whole chromosome 7 in IDH wild-type glioblastoma. Genes and Development, 2018, 32, 512-523.	5.9	40
24	Loss of host-derived osteopontin creates a glioblastoma-promoting microenvironment. Neuro-Oncology, 2018, 20, 355-366.	1.2	32
25	TMIC-05. ABSCOPAL IMMUNE RESPONSE IN GLIOBLASTOMA ELICITED BY MIR124-ATTENUATED ONCOLYTIC HERPES SIMPLEX VIRUS 1 ARMED WITH UL16 BINDING PROTEIN 3. Neuro-Oncology, 2018, 20, vi256-vi257.	1.2	Ο
26	TMIC-53. IDENTIFICATION OF MYELOID CELL-DERIVED TRANSCRIPTS IN GLIOBLASTOMA. Neuro-Oncology, 2018, 20, vi268-vi268.	1.2	0
27	PDTM-43. THE ROLE OF TUMOR ASSOCIATED MACROPHAGES IN PEDIATRIC HIGH-GRADE GLIOMA. Neuro-Oncology, 2018, 20, vi213-vi213.	1.2	1
28	A De Novo Mouse Model of C11orf95-RELA Fusion-Driven Ependymoma Identifies Driver Functions in Addition to NF-κB. Cell Reports, 2018, 23, 3787-3797.	6.4	53
29	Mutant IDH1 regulates the tumor-associated immune system in gliomas. Genes and Development, 2017, 31, 774-786.	5.9	313
30	EPND-09. THE ONCOGENIC EFFECT OF C110RF95-RELA FUSION MOSTLY DERIVES FROM FACTOR OTHER THAN NF-ΚB ACTIVATION IN SUPRATENTORIAL EPENDYMOMA. Neuro-Oncology, 2017, 19, iv17-iv17.	1.2	0
31	Genetic driver mutations define the expression signature and microenvironmental composition of highâ€grade gliomas. Glia, 2017, 65, 1914-1926.	4.9	50
32	TMIC-17. SUBTYPE-SPECIFIC CELLULAR COMPOSITION OF THE GLIOBLASTOMA MICROENVIRONMENT. Neuro-Oncology, 2016, 18, vi203-vi203.	1.2	0
33	Human glioblastomaâ€associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples. Glia, 2016, 64, 1416-1436.	4.9	90
34	The subpopulation of microglia expressing functional muscarinic acetylcholine receptors expands in stroke and Alzheimer's disease. Brain Structure and Function, 2016, 221, 1157-1172.	2.3	51
35	Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1. PLoS ONE, 2015, 10, e0116644.	2.5	317
36	Vascular Signal Transducer and Activator of Transcription-3 Promotes Angiogenesis and Neuroplasticity Long-Term After Stroke. Circulation, 2015, 131, 1772-1782.	1.6	71

#	Article	IF	CITATIONS
37	Altered microglial phagocytosis in GPR34â€deficient mice. Glia, 2015, 63, 206-215.	4.9	60
38	Loss of CX3CR1 increases accumulation of inflammatory monocytes and promotes gliomagenesis. Oncotarget, 2015, 6, 15077-15094.	1.8	154
39	The subpopulation of microglia sensitive to neurotransmitters/neurohormones is modulated by stimulation with LPS, interferon-γ, and IL-4. Clia, 2014, 62, 667-679.	4.9	60
40	NTPDase1 activity attenuates microglial phagocytosis. Purinergic Signalling, 2013, 9, 199-205.	2.2	38
41	Toll-like receptor 2 mediates microglia/brain macrophage MT1-MMP expression and glioma expansion. Neuro-Oncology, 2013, 15, 1457-1468.	1.2	115