
## Tomoo Shimada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3401564/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                            | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Stomagen positively regulates stomatal density in Arabidopsis. Nature, 2010, 463, 241-244.                                                                                                         | 27.8 | 382       |
| 2  | A rapid and nonâ€destructive screenable marker, FAST, for identifying transformed seeds of<br><i>Arabidopsis thaliana</i> . Plant Journal, 2010, 61, 519-528.                                      | 5.7  | 325       |
| 3  | Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large<br>Precursor-Accumulating Vesicles. Plant Cell, 1998, 10, 825-836.                                                  | 6.6  | 307       |
| 4  | Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proceedings<br>of the National Academy of Sciences of the United States of America, 2010, 107, 6894-6899. | 7.1  | 306       |
| 5  | CRISPR/Cas9-Mediated Targeted Mutagenesis in the Liverwort Marchantia polymorpha L Plant and Cell<br>Physiology, 2014, 55, 475-481.                                                                | 3.1  | 262       |
| 6  | Vacuolar sorting receptor for seed storage proteins in Arabidopsis thaliana. Proceedings of the<br>National Academy of Sciences of the United States of America, 2003, 100, 16095-16100.           | 7.1  | 235       |
| 7  | Why green fluorescent fusion proteins have not been observed in the vacuoles of higher plants. Plant<br>Journal, 2003, 35, 545-555.                                                                | 5.7  | 226       |
| 8  | Enhancement of leaf photosynthetic capacity through increased stomatal density in Arabidopsis. New<br>Phytologist, 2013, 198, 757-764.                                                             | 7.3  | 223       |
| 9  | A Proteinase-Storing Body that Prepares for Cell Death or Stresses in the Epidermal Cells of<br>Arabidopsis. Plant and Cell Physiology, 2001, 42, 894-899.                                         | 3.1  | 208       |
| 10 | Vacuolar Processing Enzymes Are Essential for Proper Processing of Seed Storage Proteins in<br>Arabidopsis thaliana. Journal of Biological Chemistry, 2003, 278, 32292-32299.                      | 3.4  | 189       |
| 11 | A novel role for oleosins in freezing tolerance of oilseeds in <i>Arabidopsis thaliana</i> . Plant<br>Journal, 2008, 55, 798-809.                                                                  | 5.7  | 184       |
| 12 | An Endoplasmic Reticulum-Derived Structure That Is Induced under Stress Conditions in Arabidopsis.<br>Plant Physiology, 2002, 130, 1807-1814.                                                      | 4.8  | 147       |
| 13 | Efficient CRISPR/Cas9-based genome editing and its application to conditional genetic analysis in<br>Marchantia polymorpha. PLoS ONE, 2018, 13, e0205117.                                          | 2.5  | 141       |
| 14 | Characterization of Organelles in the Vacuolar-Sorting Pathway by Visualization with GFP in Tobacco<br>BY-2 Cells. Plant and Cell Physiology, 2000, 41, 993-1001.                                  | 3.1  | 138       |
| 15 | AtVPS29, a Putative Component of a Retromer Complex, is Required for the Efficient Sorting of Seed Storage Proteins. Plant and Cell Physiology, 2006, 47, 1187-1194.                               | 3.1  | 135       |
| 16 | KATAMARI1/MURUS3 Is a Novel Golgi Membrane Protein That Is Required for Endomembrane<br>Organization in Arabidopsis. Plant Cell, 2005, 17, 1764-1776.                                              | 6.6  | 134       |
| 17 | Vacuolar Processing Enzyme Responsible for Maturation of Seed Proteins. Journal of Plant<br>Physiology, 1995, 145, 632-640.                                                                        | 3.5  | 125       |
| 18 | Identification and Dynamics of <i>Arabidopsis</i> Adaptor Protein-2 Complex and Its Involvement in<br>Floral Organ Development. Plant Cell, 2013, 25, 2958-2969.                                   | 6.6  | 121       |

| #  | Article                                                                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Polar Localization of the NIP5;1 Boric Acid Channel Is Maintained by Endocytosis and Facilitates Boron<br>Transport in Arabidopsis Roots. Plant Cell, 2017, 29, 824-842.                                 | 6.6 | 107       |
| 20 | Arabidopsis VPS35, a Retromer Component, is Required for Vacuolar Protein Sorting and Involved in<br>Plant Growth and Leaf Senescence. Plant and Cell Physiology, 2008, 49, 142-156.                     | 3.1 | 105       |
| 21 | Ectopic Expression of an Esterase, Which is a Candidate for the Unidentified Plant Cutinase, Causes<br>Cuticular Defects in Arabidopsis thaliana. Plant and Cell Physiology, 2010, 51, 123-131.          | 3.1 | 105       |
| 22 | Multiple Functional Proteins Are Produced by Cleaving Asn-Gln Bonds of a Single Precursor by<br>Vacuolar Processing Enzyme. Journal of Biological Chemistry, 1999, 274, 2563-2570.                       | 3.4 | 98        |
| 23 | Leaf Oil Body Functions as a Subcellular Factory for the Production of a Phytoalexin in Arabidopsis.<br>Plant Physiology, 2014, 164, 105-118.                                                            | 4.8 | 98        |
| 24 | The ER Body, a Novel Endoplasmic Reticulum-Derived Structure in Arabidopsis. Plant and Cell<br>Physiology, 2003, 44, 661-666.                                                                            | 3.1 | 92        |
| 25 | GNOM-LIKE1/ERMO1 and SEC24a/ERMO2 Are Required for Maintenance of Endoplasmic Reticulum<br>Morphology in <i>Arabidopsis thaliana</i> Â. Plant Cell, 2009, 21, 3672-3685.                                 | 6.6 | 92        |
| 26 | AtVAM3 is Required for Normal Specification of Idioblasts, Myrosin Cells. Plant and Cell Physiology, 2006, 47, 164-175.                                                                                  | 3.1 | 91        |
| 27 | Vacuolar Processing Enzyme of Soybean That Converts Proproteins to the Corresponding Mature<br>Forms. Plant and Cell Physiology, 1994, 35, 713-718.                                                      | 3.1 | 87        |
| 28 | Arabidopsis Vacuolar Sorting Mutants (green fluorescent seed) Can Be Identified Efficiently by<br>Secretion of Vacuole-Targeted Green Fluorescent Protein in Their Seeds. Plant Cell, 2007, 19, 597-609. | 6.6 | 87        |
| 29 | A VPE family supporting various vacuolar functions in plants. Physiologia Plantarum, 2005, 123, 369-375.                                                                                                 | 5.2 | 86        |
| 30 | Spatiotemporal Secretion of PEROXIDASE36 Is Required for Seed Coat Mucilage Extrusion in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 1355-1367.                                                          | 6.6 | 85        |
| 31 | Arabidopsis KAM2/GRV2 Is Required for Proper Endosome Formation and Functions in Vacuolar Sorting and Determination of the Embryo Growth Axis. Plant Cell, 2007, 19, 320-332.                            | 6.6 | 83        |
| 32 | The Novel Nuclear Envelope Protein KAKU4 Modulates Nuclear Morphology in <i>Arabidopsis</i> Â. Plant<br>Cell, 2014, 26, 2143-2155.                                                                       | 6.6 | 81        |
| 33 | MAIGO2 Is Involved in Exit of Seed Storage Proteins from the Endoplasmic Reticulum in Arabidopsis thaliana. Plant Cell, 2007, 18, 3535-3547.                                                             | 6.6 | 79        |
| 34 | The AP-1 µ Adaptin is Required for KNOLLE Localization at the Cell Plate to Mediate Cytokinesis in<br>Arabidopsis. Plant and Cell Physiology, 2013, 54, 838-847.                                         | 3.1 | 79        |
| 35 | A Vacuolar Sorting Receptor PV72 on the Membrane of Vesicles that Accumulate Precursors of Seed Storage Proteins (PAC Vesicles). Plant and Cell Physiology, 2002, 43, 1086-1095.                         | 3.1 | 74        |
| 36 | The Adaptor Complex AP-4 Regulates Vacuolar Protein Sorting at the trans-Golgi Network by<br>Interacting with VACUOLAR SORTING RECEPTOR1. Plant Physiology, 2016, 170, 211-219.                          | 4.8 | 72        |

| #  | Article                                                                                                                                                                                                                                          | IF  | CITATIONS |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Higher Stomatal Density Improves Photosynthetic Induction and Biomass Production in Arabidopsis<br>Under Fluctuating Light. Frontiers in Plant Science, 2020, 11, 589603.                                                                        | 3.6 | 69        |
| 38 | Calcium-mediated Association of a Putative Vacuolar Sorting Receptor PV72 with a Propeptide of 2S Albumin. Journal of Biological Chemistry, 2002, 277, 8708-8715.                                                                                | 3.4 | 64        |
| 39 | An ER-Localized Form of PV72, a Seed-Specific Vacuolar Sorting Receptor, Interferes the Transport of an NPIR-Containing Proteinase in Arabidopsis Leaves. Plant and Cell Physiology, 2004, 45, 9-17.                                             | 3.1 | 64        |
| 40 | Positive and negative peptide signals control stomatal density. Cellular and Molecular Life Sciences, 2011, 68, 2081-2088.                                                                                                                       | 5.4 | 63        |
| 41 | <scp>GFS</scp> 9/ <scp>TT</scp> 9 contributes to intracellular membrane trafficking and flavonoid accumulation in <i><scp>A</scp>rabidopsis thaliana</i> . Plant Journal, 2014, 80, 410-423.                                                     | 5.7 | 63        |
| 42 | Diversity and Formation of Endoplasmic Reticulum-Derived Compartments in Plants. Are These<br>Compartments Specific to Plant Cells?. Plant Physiology, 2004, 136, 3435-3439.                                                                     | 4.8 | 61        |
| 43 | Polar Localization of the Borate Exporter BOR1 Requires AP2-Dependent Endocytosis. Plant<br>Physiology, 2019, 179, 1569-1580.                                                                                                                    | 4.8 | 58        |
| 44 | Leaf Endoplasmic Reticulum Bodies Identified in Arabidopsis Rosette Leaves Are Involved in Defense<br>against Herbivory. Plant Physiology, 2019, 179, 1515-1524.                                                                                 | 4.8 | 58        |
| 45 | C-Terminal KDEL Sequence of A KDEL-Tailed Cysteine Proteinase (Sulfhydryl-Endopeptidase) Is Involved<br>in Formation of KDEL Vesicle and in Efficient Vacuolar Transport of Sulfhydryl-Endopeptidase. Plant<br>Physiology, 2003, 132, 1892-1900. | 4.8 | 56        |
| 46 | Endoplasmic reticulum-resident proteins are constitutively transported to vacuoles for degradation.<br>Plant Journal, 2004, 39, 393-402.                                                                                                         | 5.7 | 53        |
| 47 | MAIGO5 Functions in Protein Export from Golgi-Associated Endoplasmic Reticulum Exit Sites<br>in <i>Arabidopsis</i> Â. Plant Cell, 2013, 25, 4658-4675.                                                                                           | 6.6 | 53        |
| 48 | Endosomal proteases facilitate the fusion of endosomes with vacuoles at the final step of the endocytotic pathway. Plant Journal, 2005, 41, 888-898.                                                                                             | 5.7 | 52        |
| 49 | Vacuolar SNAREs Function in the Formation of the Leaf Vascular Network by Regulating Auxin Distribution. Plant and Cell Physiology, 2009, 50, 1319-1328.                                                                                         | 3.1 | 52        |
| 50 | FAMA Is an Essential Component for the Differentiation of Two Distinct Cell Types, Myrosin Cells and<br>Guard Cells, in <i>Arabidopsis</i> Â. Plant Cell, 2014, 26, 4039-4052.                                                                   | 6.6 | 50        |
| 51 | Chloroplast Cpn20 forms a tetrameric structure inArabidopsis thaliana. Plant Journal, 1999, 17,<br>467-477.                                                                                                                                      | 5.7 | 46        |
| 52 | Chloroplasts Have a Novel Cpn10 in Addition to Cpn20 as Co-chaperonins in Arabidopsis thaliana.<br>Journal of Biological Chemistry, 2001, 276, 29688-29694.                                                                                      | 3.4 | 46        |
| 53 | Arabidopsis Qa-SNARE SYP2 proteins localized to different subcellular regions function redundantly<br>in vacuolar protein sorting and plant development. Plant Journal, 2010, 64, 924-935.                                                       | 5.7 | 46        |
| 54 | Myosin XI-Dependent Formation of Tubular Structures from Endoplasmic Reticulum Isolated from<br>Tobacco Cultured BY-2 Cells  Â. Plant Physiology, 2011, 156, 129-143.                                                                            | 4.8 | 46        |

| #  | Article                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Identification of an Allele of VAM3/SYP22 that Confers a Semi-dwarf Phenotype in Arabidopsis thaliana.<br>Plant and Cell Physiology, 2005, 46, 1358-1365.                                                                                       | 3.1 | 41        |
| 56 | Structural and functional relationships between plasmodesmata and plant endoplasmic<br>reticulum–plasma membrane contact sites consisting of three synaptotagmins. New Phytologist, 2020,<br>226, 798-808.                                      | 7.3 | 40        |
| 57 | <scp>MAG</scp> 2 and three <scp>MAG</scp> 2â€ <scp>INTERACTING PROTEIN</scp> s form an <scp>ER</scp> â€localized complex to facilitate storage protein transport in <i>Arabidopsis thaliana</i> .<br>Plant Journal, 2013, 76, 781-791.          | 5.7 | 34        |
| 58 | MAG4/Atp115 is a Golgi-Localized Tethering Factor that Mediates Efficient Anterograde Transport in Arabidopsis. Plant and Cell Physiology, 2010, 51, 1777-1787.                                                                                 | 3.1 | 33        |
| 59 | CONTINUOUS VASCULAR RING (COV1) is a trans-Golgi Network-Localized Membrane Protein Required for Golgi Morphology and Vacuolar Protein Sorting. Plant and Cell Physiology, 2014, 55, 764-772.                                                   | 3.1 | 32        |
| 60 | A Novel Membrane Protein That Is Transported to Protein Storage Vacuoles via<br>Precursor-Accumulating Vesicles. Plant Cell, 2001, 13, 2361-2372.                                                                                               | 6.6 | 31        |
| 61 | Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in<br>Arabidopsis. Plant Physiology, 2016, 170, 867-880.                                                                                          | 4.8 | 31        |
| 62 | BEACH-Domain Proteins Act Together in a Cascade to Mediate Vacuolar Protein Trafficking and Disease<br>Resistance in Arabidopsis. Molecular Plant, 2015, 8, 389-398.                                                                            | 8.3 | 27        |
| 63 | Synaptotagmin-Associated Endoplasmic Reticulum-Plasma Membrane Contact Sites Are Localized to<br>Immobile ER Tubules. Plant Physiology, 2018, 178, 641-653.                                                                                     | 4.8 | 27        |
| 64 | HIGH STEROL ESTER 1 is a key factor in plant sterol homeostasis. Nature Plants, 2019, 5, 1154-1166.                                                                                                                                             | 9.3 | 26        |
| 65 | The Plant Endomembrane System—A Complex Network Supporting Plant Development and Physiology.<br>Plant and Cell Physiology, 2014, 55, 667-671.                                                                                                   | 3.1 | 25        |
| 66 | Involvement of Adapter Protein Complex 4 in Hypersensitive Cell Death Induced by Avirulent Bacteria.<br>Plant Physiology, 2018, 176, 1824-1834.                                                                                                 | 4.8 | 25        |
| 67 | FAMA: A Molecular Link between Stomata and Myrosin Cells. Trends in Plant Science, 2016, 21, 861-871.                                                                                                                                           | 8.8 | 24        |
| 68 | Transport of Storage Proteins to Protein Storage Vacuoles Is Mediated by Large<br>Precursor-Accumulating Vesicles. Plant Cell, 1998, 10, 825.                                                                                                   | 6.6 | 22        |
| 69 | An ABC transporter B family protein, ABCB19, is required for cytoplasmic streaming and gravitropism of the inflorescence stems. Plant Signaling and Behavior, 2016, 11, e1010947.                                                               | 2.4 | 21        |
| 70 | Isolation and characterization of a cDNA encoding mitochondrial chaperonin 10 from Arabidopsis<br>thaliana by functional complementation of an Escherichia coli groES mutant. Plant Journal, 1996, 10,<br>1119-1125.                            | 5.7 | 18        |
| 71 | A directionâ€selective localâ€thresholding method, <scp>DSLT</scp> , in combination with a dyeâ€based<br>method for automated threeâ€dimensional segmentation of cells and airspaces in developing leaves.<br>Plant Journal, 2015, 81, 357-366. | 5.7 | 15        |
| 72 | The AP-1 Complex is Required for Proper Mucilage Formation in Arabidopsis Seeds. Plant and Cell Physiology, 2018, 59, 2331-2338.                                                                                                                | 3.1 | 15        |

| #  | Article                                                                                                                                                                                                                                   | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Myrosin cells are differentiated directly from ground meristem cells and are developmentally<br>independent of the vasculature in Arabidopsis leaves. Plant Signaling and Behavior, 2016, 11, e1150403.                                   | 2.4 | 13        |
| 74 | Identification of Periplasmic Root-Cap Mucilage in Developing Columella Cells of Arabidopsis thaliana.<br>Plant and Cell Physiology, 2019, 60, 1296-1303.                                                                                 | 3.1 | 13        |
| 75 | Myrosin Cell Development Is Regulated by Endocytosis Machinery and PIN1 Polarity in Leaf Primordia<br>of <i>Arabidopsis thaliana</i> Â. Plant Cell, 2014, 26, 4448-4461.                                                                  | 6.6 | 12        |
| 76 | Plant ESCRT protein ALIX coordinates with retromer complex in regulating receptor-mediated sorting of soluble vacuolar proteins. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119, e2200492119. | 7.1 | 12        |
| 77 | Inhibition of cell polarity establishment in stomatal asymmetric cell division using the chemical compound bubblin. Development (Cambridge), 2017, 144, 499-506.                                                                          | 2.5 | 11        |
| 78 | Dynamic Capture and Release of Endoplasmic Reticulum Exit Sites by Golgi Stacks in Arabidopsis.<br>IScience, 2020, 23, 101265.                                                                                                            | 4.1 | 11        |
| 79 | Arabidopsis ECHIDNA protein is involved in seed coloration, protein trafficking to vacuoles, and vacuolar biogenesis. Journal of Experimental Botany, 2020, 71, 3999-4009.                                                                | 4.8 | 10        |
| 80 | A non-destructive screenable marker, OsFAST, for identifying transgenic rice seeds. Plant Signaling and Behavior, 2011, 6, 1454-1456.                                                                                                     | 2.4 | 9         |
| 81 | Endoplasmic Reticulum (ER) Membrane Proteins (LUNAPARKs) are Required for Proper Configuration of the Cortical ER Network in Plant Cells. Plant and Cell Physiology, 2018, 59, 1931-1941.                                                 | 3.1 | 8         |
| 82 | Fluorescent protein-based imaging and tissue-specific RNA-seq analysis of Arabidopsis hydathodes.<br>Journal of Experimental Botany, 2021, 72, 1260-1270.                                                                                 | 4.8 | 8         |
| 83 | Biogenesis of leaf endoplasmic reticulum body is regulated by both jasmonate-dependent and independent pathways. Plant Signaling and Behavior, 2019, 14, 1622982.                                                                         | 2.4 | 6         |
| 84 | A Novel Membrane Protein That Is Transported to Protein Storage Vacuoles via<br>Precursor-Accumulating Vesicles. Plant Cell, 2001, 13, 2361.                                                                                              | 6.6 | 3         |
| 85 | Spatiotemporal relationship between auxin dynamics and hydathode development in Arabidopsis leaf<br>teeth. Plant Signaling and Behavior, 2021, , 1989216.                                                                                 | 2.4 | 3         |
| 86 | Selfâ€organizing researcher networks in the plant sciences. Plants People Planet, 2019, 1, 44-47.                                                                                                                                         | 3.3 | 2         |
| 87 | Evaluation of Defective Endosomal Trafficking to the Vacuole by Monitoring Seed Storage Proteins in<br>Arabidopsis thaliana. Methods in Molecular Biology, 2014, 1209, 131-142.                                                           | 0.9 | 2         |
| 88 | Subcellular localisation of an endoplasmic reticulum-plasma membrane tethering factor,<br>SYNAPTOTAGMIN 1, is affected by fluorescent protein fusion. Plant Signaling and Behavior, 2018, 13,<br>e1547577.                                | 2.4 | 1         |
| 89 | Isolation of Protein Storage Vacuoles and Their Membranes. Methods in Molecular Biology, 2017, 1511, 163-168.                                                                                                                             | 0.9 | 0         |