
Gunter Meister

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3400595/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Coxiella burnetii T4SS effector protein AnkG hijacks the 7SK small nuclear ribonucleoprotein complex for reprogramming host cell transcription. PLoS Pathogens, 2022, 18, e1010266.	4.7	12
2	Transcriptome and chromatin alterations in social fear indicate association of MEG3 with successful extinction of fear. Molecular Psychiatry, 2022, 27, 4064-4076.	7.9	3
3	Reexamining assumptions about miRNA-guided gene silencing. Nucleic Acids Research, 2022, 50, 617-634.	14.5	57
4	Selective inhibition of miRNA processing by a herpesvirus-encoded miRNA. Nature, 2022, 605, 539-544.	27.8	23
5	Domain confusion 2: m6A-independent role of YTHDC2. Molecular Cell, 2022, 82, 1608-1609.	9.7	7
6	Single-molecule FRET uncovers hidden conformations and dynamics of human Argonaute 2. Nature Communications, 2022, 13, .	12.8	19
7	Stabilize and connect: the role of LARP7 in nuclear non-coding RNA metabolism. RNA Biology, 2021, 18, 290-303.	3.1	14
8	MicroRNA-21–Dependent Macrophage-to-Fibroblast Signaling Determines the Cardiac Response to Pressure Overload. Circulation, 2021, 143, 1513-1525.	1.6	67
9	Learning from Embryogenesis—A Comparative Expression Analysis in Melanoblast Differentiation and Tumorigenesis Reveals miRNAs Driving Melanoma Development. Journal of Clinical Medicine, 2021, 10, 2259.	2.4	5
10	Identification of novel targets of miR-622 in hepatocellular carcinoma reveals common regulation of cooperating genes and outlines the oncogenic role of zinc finger CCHC-type containing 11. Neoplasia, 2021, 23, 502-514.	5.3	5
11	Inducible and reversible inhibition of miRNA-mediated gene repression in vivo. ELife, 2021, 10, .	6.0	23
12	OUP accepted manuscript. Human Molecular Genetics, 2021, , .	2.9	1
13	Gene Expression Signatures of a Preclinical Mouse Model during Colorectal Cancer Progression under Low-Dose Metronomic Chemotherapy. Cancers, 2021, 13, 49.	3.7	7
14	Balancing of mitochondrial translation through METTL8-mediated m3C modification of mitochondrial tRNAs. Molecular Cell, 2021, 81, 4810-4825.e12.	9.7	44
15	Validation strategies for antibodies targeting modified ribonucleotides. Rna, 2020, 26, 1489-1506.	3.5	18
16	Germline AGO2 mutations impair RNA interference and human neurological development. Nature Communications, 2020, 11, 5797.	12.8	43
17	Comprehensive analysis of translation from overexpressed circular RNAs reveals pervasive translation from linear transcripts. Nucleic Acids Research, 2020, 48, 10368-10382.	14.5	57
18	miR-181a Modulation of ERK-MAPK Signaling Sustains DC-SIGN Expression and Limits Activation of Monocyte-Derived Dendritic Cells. Cell Reports, 2020, 30, 3793-3805.e5.	6.4	14

#	Article	IF	CITATIONS
19	Angiotensin-(1–9) prevents cardiomyocyte hypertrophy by controlling mitochondrial dynamics via miR-129-3p/PKIA pathway. Cell Death and Differentiation, 2020, 27, 2586-2604.	11.2	29
20	MicroRNA dilution during oocyte growth disables the microRNA pathway in mammalian oocytes. Nucleic Acids Research, 2020, 48, 8050-8062.	14.5	20
21	A precisely positioned MED12 activation helix stimulates CDK8 kinase activity. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 2894-2905.	7.1	47
22	LARP7-Mediated U6 snRNA Modification Ensures Splicing Fidelity and Spermatogenesis in Mice. Molecular Cell, 2020, 77, 999-1013.e6.	9.7	41
23	siRNA Specificity: RNAi Mechanisms and Strategies to Reduce Off-Target Effects. Frontiers in Plant Science, 2020, 11, 526455.	3.6	62
24	The Alazami Syndrome-Associated Protein LARP7 Guides U6 Small Nuclear RNA Modification and Contributes to Splicing Robustness. Molecular Cell, 2020, 77, 1014-1031.e13.	9.7	45
25	Prevention of dsRNAâ€induced interferon signaling by AGO1x is linked to breast cancer cell proliferation. EMBO Journal, 2020, 39, e103922.	7.8	22
26	Library Selection with a Randomized Repertoire of (βα) ₈ -Barrel Enzymes Results in Unexpected Induction of Gene Expression. Biochemistry, 2019, 58, 4207-4217.	2.5	0
27	Epigenetic Regulation of the Social Brain. Trends in Neurosciences, 2019, 42, 471-484.	8.6	41
28	The nuclear matrix protein Matr3 regulates processing of the synaptic microRNA-138-5p. Neurobiology of Learning and Memory, 2019, 159, 36-45.	1.9	11
29	Molecular profiling of stem cell-like female germ line cells in Drosophila delineates networks important for stemness and differentiation. Biology Open, 2019, 8, .	1.2	6
30	Regulation of microRNA biogenesis and its crosstalk with other cellular pathways. Nature Reviews Molecular Cell Biology, 2019, 20, 5-20.	37.0	920
31	<i>Drosophila</i> Sister-of-Sex-lethal reinforces a male-specific gene expression pattern by controlling <i>Sex-lethal</i> alternative splicing. Nucleic Acids Research, 2019, 47, 2276-2288.	14.5	17
32	Determination of enrichment factors for modified RNA in MeRIP experiments. Methods, 2019, 156, 102-109.	3.8	12
33	The Long Non-coding RNA lnc-31 Interacts with Rock1 mRNA and Mediates Its YB-1-Dependent Translation. Cell Reports, 2018, 23, 733-740.	6.4	55
34	Site‧pecific Labelling of Native Mammalian Proteins for Singleâ€Molecule FRET Measurements. ChemBioChem, 2018, 19, 780-783.	2.6	10
35	Interactions, localization, and phosphorylation of the m ⁶ A generating METTL3–METTL14–WTAP complex. Rna, 2018, 24, 499-512.	3.5	312
36	The tumor suppressor Brat controls neuronal stem cell lineages by inhibiting Deadpan and Zelda. EMBO Reports, 2018, 19, 102-117.	4.5	41

#	Article	IF	CITATIONS
37	MicroRNA-sequencing data analyzing melanoma development and progression. Experimental and Molecular Pathology, 2018, 105, 371-379.	2.1	13
38	Reconstitution of mammalian cleavage factor II involved in 3′ processing of mRNA precursors. Rna, 2018, 24, 1721-1737.	3.5	36
39	MicroRNA Dysregulation in Pulmonary Arteries from Chronic Obstructive Pulmonary Disease. Relationships with Vascular Remodeling. American Journal of Respiratory Cell and Molecular Biology, 2018, 59, 490-499.	2.9	34
40	Identification of microRNA Precursor-Associated Proteins. Methods in Molecular Biology, 2018, 1823, 103-114.	0.9	6
41	LIN28 Selectively Modulates a Subclass of Let-7 MicroRNAs. Molecular Cell, 2018, 71, 271-283.e5.	9.7	89
42	A Compendium of RNA-Binding Proteins that Regulate MicroRNA Biogenesis. Molecular Cell, 2017, 66, 270-284.e13.	9.7	241
43	Peptide-Based Inhibition of miRNA-Guided Gene Silencing. Methods in Molecular Biology, 2017, 1517, 199-210.	0.9	3
44	The Arabidopsis THO/TREX component TEX1 functionally interacts with MOS11 and modulates mRNA export and alternative splicing events. Plant Molecular Biology, 2017, 93, 283-298.	3.9	39
45	Transcriptomic profiling of platelet senescence and platelet extracellular vesicles. Transfusion, 2017, 57, 144-156.	1.6	36
46	Conserved asymmetry underpins homodimerization of Dicer-associated double-stranded RNA-binding proteins. Nucleic Acids Research, 2017, 45, 12577-12584.	14.5	17
47	Phosphorylation of Argonaute proteins affects <scp>mRNA</scp> binding and is essential for micro <scp>RNA</scp> â€guided gene silencing <i>inÂvivo</i> . EMBO Journal, 2017, 36, 2088-2106.	7.8	69
48	Slug Is Increased in Vascular Remodeling and Induces a Smooth Muscle Cell Proliferative Phenotype. PLoS ONE, 2016, 11, e0159460.	2.5	11
49	Gene silencing pathways found in the green alga Volvox carteri reveal insights into evolution and origins of small RNA systems in plants. BMC Genomics, 2016, 17, 853.	2.8	15
50	Early dissemination seeds metastasis in breast cancer. Nature, 2016, 540, 552-558.	27.8	550
51	From t <scp>RNA</scp> to mi <scp>RNA</scp> : <scp> RNA</scp> â€folding contributes to correct entry into noncoding <scp>RNA</scp> pathways. FEBS Letters, 2016, 590, 2354-2363.	2.8	16
52	The Lupus Autoantigen La Prevents Mis-channeling of tRNA Fragments into the Human MicroRNA Pathway. Molecular Cell, 2016, 63, 110-124.	9.7	107
53	Structural and functional insights into the fly microRNA biogenesis factor Loquacious. Rna, 2016, 22, 383-396.	3.5	11
54	miR-155 targets Caspase-3 mRNA in activated macrophages. RNA Biology, 2016, 13, 43-58.	3.1	40

#	Article	IF	CITATIONS
55	The Slicer Activity of ARGONAUTE1 is Required Specifically for the Phasing, Not Production, of Trans-Acting Short Interfering RNAs in Arabidopsis. Plant Cell, 2016, 28, tpc.00121.2016.	6.6	62
56	Argonaute Family Protein Expression in Normal Tissue and Cancer Entities. PLoS ONE, 2016, 11, e0161165.	2.5	38
57	Induction of exportin-5 expression during melanoma development supports the cellular behavior of human malignant melanoma cells. Oncotarget, 2016, 7, 62292-62304.	1.8	19
58	Control of glioma cell migration and invasiveness by GDF-15. Oncotarget, 2016, 7, 7732-7746.	1.8	40
59	The Crystal Structure of the NHL Domain in Complex with RNA Reveals the Molecular Basis of Drosophila Brain-Tumor-Mediated Gene Regulation. Cell Reports, 2015, 13, 1206-1220.	6.4	79
60	miRA: adaptable novel miRNA identification in plants using small RNA sequencing data. BMC Bioinformatics, 2015, 16, 370.	2.6	79
61	Epstein-Barr Virus EBER Transcripts Affect miRNA-Mediated Regulation of Specific Targets and Are Processed to Small RNA Species. Non-coding RNA, 2015, 1, 170-191.	2.6	7
62	Importin-Î ² facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Research, 2015, 43, 7447-7461.	14.5	52
63	p53-Regulated Networks of Protein, mRNA, miRNA, and IncRNA Expression Revealed by Integrated Pulsed Stable Isotope Labeling With Amino Acids in Cell Culture (pSILAC) and Next Generation Sequencing (NGS) Analyses. Molecular and Cellular Proteomics, 2015, 14, 2609-2629.	3.8	59
64	Noncoding RNAs that associate with YB-1 alter proliferation in prostate cancer cells. Rna, 2015, 21, 1159-1172.	3.5	20
65	Biochemical isolation of Argonaute protein complexes by Ago-APP. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 11841-11845.	7.1	82
66	5′ isomiR variation is of functional and evolutionary importance. Nucleic Acids Research, 2014, 42, 9424-9435.	14.5	203
67	siPools: highly complex but accurately defined siRNA pools eliminate off-target effects. Nucleic Acids Research, 2014, 42, 8049-8061.	14.5	137
68	A miRâ€155â€dependent microRNA hierarchy in dendritic cell maturation and macrophage activation. FEBS Letters, 2014, 588, 632-640.	2.8	32
69	Assembly and function of small RNA – Argonaute protein complexes. Biological Chemistry, 2014, 395, 611-629.	2.5	72
70	RNA Binding of PRC2: Promiscuous or Well Ordered?. Molecular Cell, 2014, 55, 157-158.	9.7	14
71	Generation of catalytic human Ago4 identifies structural elements important for RNA cleavage. Rna, 2014, 20, 1532-1538.	3.5	31
72	Import routes and nuclear functions of Argonaute and other small RNA-silencing proteins. Trends in Biochemical Sciences, 2014, 39, 420-431.	7.5	61

#	Article	IF	CITATIONS
73	The TGF-Î ² -inducible miR-23a cluster attenuates IFN-Î ³ levels and antigen-specific cytotoxicity in human CD8+ T cells. Journal of Leukocyte Biology, 2014, 96, 633-645.	3.3	36
74	The NHL domain of BRAT is an RNA-binding domain that directly contacts the <i>hunchback</i> mRNA for regulation. Genes and Development, 2014, 28, 749-764.	5.9	74
75	A Circulating MicroRNA Profile Is Associated with Late-Stage Neovascular Age-Related Macular Degeneration. PLoS ONE, 2014, 9, e107461.	2.5	62
76	MicroRNA-mediated down-regulation of NKG2D ligands contributes to glioma immune escape. Oncotarget, 2014, 5, 7651-7662.	1.8	79
77	Argonaute proteins: functional insights and emerging roles. Nature Reviews Genetics, 2013, 14, 447-459.	16.3	871
78	Turning catalytically inactive human Argonaute proteins into active slicer enzymes. Nature Structural and Molecular Biology, 2013, 20, 814-817.	8.2	89
79	Argonaute and GW182 proteins: an effective alliance in gene silencing. Biochemical Society Transactions, 2013, 41, 855-860.	3.4	62
80	Structural features of Argonaute–GW182 protein interactions. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, E3770-9.	7.1	98
81	The mammalian TRIM-NHL protein TRIM71/LIN-41 is a repressor of mRNA function. Nucleic Acids Research, 2013, 41, 518-532.	14.5	162
82	microRNA-122 Dependent Binding of Ago2 Protein to Hepatitis C Virus RNA Is Associated with Enhanced RNA Stability and Translation Stimulation. PLoS ONE, 2013, 8, e56272.	2.5	76
83	MicroRNAs Distinguish Cytogenetic Subgroups in Pediatric AML and Contribute to Complex Regulatory Networks in AML-Relevant Pathways. PLoS ONE, 2013, 8, e56334.	2.5	33
84	Dicer-dependent and -independent Argonaute2 Protein Interaction Networks in Mammalian Cells. Molecular and Cellular Proteomics, 2012, 11, 1442-1456.	3.8	53
85	Extensive terminal and asymmetric processing of small RNAs from rRNAs, snoRNAs, snRNAs, and tRNAs. Nucleic Acids Research, 2012, 40, 6787-6799.	14.5	276
86	microRNAs associated with the different human Argonaute proteins. Nucleic Acids Research, 2012, 40, 9850-9862.	14.5	179
87	Micro <scp>RNA</scp> â€142 is mutated in about 20% of diffuse large <scp>B</scp> â€cell lymphoma. Cancer Medicine, 2012, 1, 141-155.	2.8	74
88	Regulation of microRNA biogenesis and function. Thrombosis and Haemostasis, 2012, 107, 605-610.	3.4	171
89	Small RNAs derived from longer non-coding RNAs. Biochimie, 2011, 93, 1905-1915.	2.6	139
90	Biogenic mechanisms and utilization of small RNAs derived from human protein-coding genes. Nature Structural and Molecular Biology, 2011, 18, 1075-1082.	8.2	94

#	Article	IF	CITATIONS
91	microRNA profiling in Epstein–Barr virus-associated B-cell lymphoma. Nucleic Acids Research, 2011, 39, 1880-1893.	14.5	132
92	CAMTA1 is a novel tumour suppressor regulated by miR-9/9 [*] in glioblastoma stem cells. EMBO Journal, 2011, 30, 4309-4322.	7.8	141
93	Increased siRNA duplex stability correlates with reduced off-target and elevated on-target effects. Rna, 2011, 17, 737-749.	3.5	61
94	Phosphorylation of human Argonaute proteins affects small RNA binding. Nucleic Acids Research, 2011, 39, 2330-2343.	14.5	157
95	Identification and Analysis of Expression of Novel MicroRNAs of Murine Gammaherpesvirus 68. Journal of Virology, 2010, 84, 10266-10275.	3.4	45
96	MicroRNAs: From Decay to Decoy. Cell, 2010, 140, 612-614.	28.9	43
97	Systematic Analysis of Viral and Cellular MicroRNA Targets in Cells Latently Infected with Human Î ³ -Herpesviruses by RISC Immunoprecipitation Assay. Cell Host and Microbe, 2010, 7, 324-334.	11.0	199
98	Argonaute proteins at a glance. Journal of Cell Science, 2010, 123, 1819-1823.	2.0	182
99	Identification of Novel Epstein-Barr Virus MicroRNA Genes from Nasopharyngeal Carcinomas. Journal of Virology, 2009, 83, 3333-3341.	3.4	227
100	Importin 8 Is a Gene Silencing Factor that Targets Argonaute Proteins to Distinct mRNAs. Cell, 2009, 136, 496-507.	28.9	306
101	Strand-specific 5′-O-methylation of siRNA duplexes controls guide strand selection and targeting specificity. Rna, 2008, 14, 263-274.	3.5	174
102	A Human snoRNA with MicroRNA-Like Functions. Molecular Cell, 2008, 32, 519-528.	9.7	738
103	A multifunctional human Argonaute2-specific monoclonal antibody. Rna, 2008, 14, 1244-1253.	3.5	128
104	Fluorescence correlation spectroscopy and fluorescence cross-correlation spectroscopy reveal the cytoplasmic origination of loaded nuclear RISC in vivo in human cells. Nucleic Acids Research, 2008, 36, 6439-6449.	14.5	173
105	Tdrd3 is a novel stress granule-associated protein interacting with the Fragile-X syndrome protein FMRP. Human Molecular Genetics, 2008, 17, 3236-3246.	2.9	77
106	RNA Interference in the Nucleus. Science, 2008, 321, 496-497.	12.6	8
107	Epstein-Barr virus-encoded microRNA miR-BART2 down-regulates the viral DNA polymerase BALF5. Nucleic Acids Research, 2007, 36, 666-675.	14.5	295
108	Differential Regulation of microRNAs by p53 Revealed by Massively Parallel Sequencing: miR-34a is a p53 Target That Induces Apoptosis and G1-arrest. Cell Cycle, 2007, 6, 1586-1593.	2.6	859

#	Article	IF	CITATIONS
109	miRNAs Get an Early Start on Translational Silencing. Cell, 2007, 131, 25-28.	28.9	196
110	Argonaute Proteins: Mediators of RNA Silencing. Molecular Cell, 2007, 26, 611-623.	9.7	627
111	Identification of Human microRNA Targets From Isolated Argonaute Protein Complexes. RNA Biology, 2007, 4, 76-84.	3.1	256
112	Proteomic and functional analysis of Argonaute ontaining mRNA–protein complexes in human cells. EMBO Reports, 2007, 8, 1052-1060.	4.5	316
113	Phosphorylation regulates the activity of the SMN complex during assembly of spliceosomal U snRNPs. EMBO Reports, 2005, 6, 70-76.	4.5	63
114	Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature, 2005, 434, 666-670.	27.8	596
115	Identification of Novel Argonaute-Associated Proteins. Current Biology, 2005, 15, 2149-2155.	3.9	487
116	Reduced U snRNP assembly causes motor axon degeneration in an animal model for spinal muscular atrophy. Genes and Development, 2005, 19, 2320-2330.	5.9	207
117	Toward an Assembly Line for U7 snRNPs. Journal of Biological Chemistry, 2005, 280, 34435-34440.	3.4	38
118	Crystal Structure of A. aeolicus Argonaute, a Site-Specific DNA-Guided Endoribonuclease, Provides Insights into RISC-Mediated mRNA Cleavage. Molecular Cell, 2005, 19, 405-419.	9.7	349
119	Mechanisms of gene silencing by double-stranded RNA. Nature, 2004, 431, 343-349.	27.8	2,226
120	Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. Rna, 2004, 10, 544-550.	3.5	536
121	Ultrastructural characterisation of a nuclear domain highly enriched in survival of motor neuron (SMN) protein. Experimental Cell Research, 2004, 292, 312-321.	2.6	17
122	Human Argonaute2 Mediates RNA Cleavage Targeted by miRNAs and siRNAs. Molecular Cell, 2004, 15, 185-197.	9.7	1,699
123	Unique Sm core structure of U7 snRNPs: assembly by a specialized SMN complex and the role of a new component, Lsm11, in histone RNA processing. Genes and Development, 2003, 17, 2321-2333.	5.9	188
124	Epstein-Barr Virus Nuclear Antigen 2 Binds via Its Methylated Arginine-Glycine Repeat to the Survival Motor Neuron Protein. Journal of Virology, 2003, 77, 5008-5013.	3.4	49
125	Gene targeting of Gemin2 in mice reveals a correlation between defects in the biogenesis of U snRNPs and motoneuron cell death. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 10126-10131.	7.1	73
126	SMN-mediated assembly of RNPs: a complex story. Trends in Cell Biology, 2002, 12, 472-478.	7.9	210

#	Article	IF	CITATIONS
127	Assisted RNP assembly: SMN and PRMT5 complexes cooperate in the formation of spliceosomal UsnRNPs. EMBO Journal, 2002, 21, 5853-5863.	7.8	173
128	A multiprotein complex mediates the ATP-dependent assembly of spliceosomal U snRNPs. Nature Cell Biology, 2001, 3, 945-949.	10.3	284
129	Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Current Biology, 2001, 11, 1990-1994.	3.9	306
130	Regulated dicing of <i>pre-mir-144</i> via reshaping of its terminal loop. Nucleic Acids Research, 0, , .	14.5	8