John Clark Lagarias

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3397786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Protein–chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes. Photochemical and Photobiological Sciences, 2022, 21, 471-491.	2.9	7
2	Comparison of the Forward and Reverse Photocycle Dynamics of Two Highly Similar Canonical Red/Green Cyanobacteriochromes Reveals Unexpected Differences. Biochemistry, 2021, 60, 274-288.	2.5	9
3	Crystal structure of a far-red–sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	13
4	Natural diversity provides a broad spectrum of cyanobacteriochrome-based diguanylate cyclases. Plant Physiology, 2021, 187, 632-645.	4.8	11
5	Bilin-dependent regulation of chlorophyll biosynthesis by GUN4. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	18
6	Phytochrome evolution in 3D: deletion, duplication, and diversification. New Phytologist, 2020, 225, 2283-2300.	7.3	77
7	Conservation and Diversity in the Primary Reverse Photodynamics of the Canonical Red/Green Cyanobacteriochrome Family. Biochemistry, 2020, 59, 4015-4028.	2.5	1
8	A far-red cyanobacteriochrome lineage specific for verdins. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 27962-27970.	7.1	20
9	Evolution-inspired design of multicolored photoswitches from a single cyanobacteriochrome scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 15573-15580.	7.1	16
10	Regulation of monocot and dicot plant development with constitutively active alleles of phytochrome B. Plant Direct, 2020, 4, e00210.	1.9	7
11	Spectral and photochemical diversity of tandem cysteine cyanobacterial phytochromes. Journal of Biological Chemistry, 2020, 295, 6754-6766.	3.4	8
12	Conservation and diversity in the secondary forward photodynamics of red/green cyanobacteriochromesâ€. Photochemical and Photobiological Sciences, 2019, 18, 2539-2552.	2.9	6
13	LOF and GOF Alleles Shed Light on the Molecular Basis of phyB Signaling in Plants. Plant Cell, 2019, 31, 1400-1401.	6.6	0
14	Reverse Photodynamics of the Noncanonical Red/Green NpR3784 Cyanobacteriochrome from <i>Nostoc punctiforme</i> . Biochemistry, 2019, 58, 2307-2317.	2.5	6
15	Forward Photodynamics of the Noncanonical Red/Green NpR3784 Cyanobacteriochrome from <i>Nostoc punctiforme</i> . Biochemistry, 2019, 58, 2297-2306.	2.5	6
16	Noncanonical Photodynamics of the Orange/Green Cyanobacteriochrome Power Sensor NpF2164g7 from the PtxD Phototaxis Regulator of <i>Nostoc punctiforme</i> . Biochemistry, 2018, 57, 2636-2648.	2.5	9
17	Correlating structural and photochemical heterogeneity in cyanobacteriochrome NpR6012g4. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 4387-4392.	7.1	65
18	Cyanobacteriochrome-based photoswitchable adenylyl cyclases (cPACs) for broad spectrum light regulation of cAMP levels in cells. Journal of Biological Chemistry, 2018, 293, 8473-8483.	3.4	59

#	Article	IF	CITATIONS
19	Phototaxis in a wild isolate of the cyanobacterium <i>Synechococcus elongatus</i> . Proceedings of the United States of America, 2018, 115, E12378-E12387.	7.1	61
20	Protonation Heterogeneity Modulates the Ultrafast Photocycle Initiation Dynamics of Phytochrome Cph1. Journal of Physical Chemistry Letters, 2018, 9, 3454-3462.	4.6	24
21	The phycocyanobilin chromophore of streptophyte algal phytochromes is synthesized by HY2. New Phytologist, 2017, 214, 1145-1157.	7.3	27
22	There and Back Again: Loss and Reacquisition of Two ys Photocycles in Cyanobacteriochromes. Photochemistry and Photobiology, 2017, 93, 741-754.	2.5	31
23	Algal light sensing and photoacclimation in aquatic environments. Plant, Cell and Environment, 2017, 40, 2558-2570.	5.7	46
24	Designing brighter near-infrared fluorescent proteins: insights from structural and biochemical studies. Chemical Science, 2017, 8, 4546-4557.	7.4	49
25	Phytochrome diversification in cyanobacteria and eukaryotic algae. Current Opinion in Plant Biology, 2017, 37, 87-93.	7.1	63
26	Ferredoxin-dependent bilin reductases in eukaryotic algae: Ubiquity and diversity. Journal of Plant Physiology, 2017, 217, 57-67.	3.5	24
27	Light-Regulated Synthesis of Cyclic-di-GMP by a Bidomain Construct of the Cyanobacteriochrome Tlr0924 (SesA) without Stable Dimerization. Biochemistry, 2017, 56, 6145-6154.	2.5	15
28	Bilin-Dependent Photoacclimation in <i>Chlamydomonas reinhardtii</i> . Plant Cell, 2017, 29, 2711-2726.	6.6	36
29	A Tightly Regulated Genetic Selection System with Signaling-Active Alleles of Phytochrome B. Plant Physiology, 2017, 173, 366-375.	4.8	5
30	Cyanobacteriochrome Photoreceptors Lacking the Canonical Cys Residue. Biochemistry, 2016, 55, 6981-6995.	2.5	34
31	1H, 13C, and 15N chemical shift assignments of cyanobacteriochrome NpR6012g4 in the green-absorbing photoproduct state. Biomolecular NMR Assignments, 2016, 10, 157-161.	0.8	6
32	Identification of Cyanobacteriochromes Detecting Far-Red Light. Biochemistry, 2016, 55, 3907-3919.	2.5	71
33	Tracking the secondary photodynamics of the green/red cyanobacteriochrome RcaE from Fremyella diplosiphon. Chemical Physics Letters, 2016, 644, 225-230.	2.6	6
34	1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpR6012g4 in the red-absorbing dark state. Biomolecular NMR Assignments, 2016, 10, 139-142.	0.8	6
35	A Light-Independent Allele of Phytochrome B Faithfully Recapitulates Photomorphogenic Transcriptional Networks. Molecular Plant, 2015, 8, 493.	8.3	0
36	Identification of DXCF cyanobacteriochrome lineages with predictable photocycles. Photochemical and Photobiological Sciences, 2015, 14, 929-941.	2.9	50

#	Article	IF	CITATIONS
37	Conservation and Diversity in the Primary Forward Photodynamics of Red/Green Cyanobacteriochromes. Biochemistry, 2015, 54, 1028-1042.	2.5	32
38	Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Hydrophobic Pocket for the C15- <i>E,anti</i> Chromophore in the Photoproduct. Biochemistry, 2015, 54, 3772-3783.	2.5	39
39	Photoactivatable genetically encoded calcium indicators for targeted neuronal imaging. Nature Methods, 2015, 12, 852-858.	19.0	85
40	Characterization of Red/Green Cyanobacteriochrome NpR6012g4 by Solution Nuclear Magnetic Resonance Spectroscopy: A Protonated Bilin Ring System in Both Photostates. Biochemistry, 2015, 54, 2581-2600.	2.5	40
41	A Constitutively Active Allele of Phytochrome B Maintains Circadian Robustness in the Absence of Light Â. Plant Physiology, 2015, 169, 814-825.	4.8	26
42	NpR3784 is the prototype for a distinctive group of red/green cyanobacteriochromes using alternative Phe residues for photoproduct tuning. Photochemical and Photobiological Sciences, 2015, 14, 258-269.	2.9	50
43	Primary endosymbiosis and the evolution of light and oxygen sensing in photosynthetic eukaryotes. Frontiers in Ecology and Evolution, 2014, 2, .	2.2	45
44	Eukaryotic algal phytochromes span the visible spectrum. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3871-3876.	7.1	153
45	PHYTOCHROME C plays a major role in the acceleration of wheat flowering under long-day photoperiod. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 10037-10044.	7.1	175
46	Marine algae and land plants share conserved phytochrome signaling systems. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 15827-15832.	7.1	108
47	Photoconversion changes bilin chromophore conjugation and protein secondary structure in the violet/orange cyanobacteriochrome NpF2163g3. Photochemical and Photobiological Sciences, 2014, 13, 951-962.	2.9	32
48	Dynamic Inhomogeneity in the Photodynamics of Cyanobacterial Phytochrome Cph1. Biochemistry, 2014, 53, 2818-2826.	2.5	65
49	Primary and Secondary Photodynamics of the Violet/Orange Dual-Cysteine NpF2164g3 Cyanobacteriochrome Domain from <i>Nostoc punctiforme</i> . Biochemistry, 2014, 53, 1029-1040.	2.5	24
50	Extensive remodeling of a cyanobacterial photosynthetic apparatus in far-red light. Science, 2014, 345, 1312-1317.	12.6	332
51	Conserved Phenylalanine Residues Are Required for Blue-Shifting of Cyanobacteriochrome Photoproducts. Biochemistry, 2014, 53, 3118-3130.	2.5	74
52	Optically Guided Photoactivity: Coordinating Tautomerization, Photoisomerization, Inhomogeneity, and Reactive Intermediates within the RcaE Cyanobacteriochrome. Journal of Physical Chemistry Letters, 2014, 5, 1527-1533.	4.6	10
53	Heterogeneous Photodynamics of the Pfr State in the Cyanobacterial Phytochrome Cph1. Biochemistry, 2014, 53, 4601-4611.	2.5	36
54	1H, 15N, and 13C chemical shift assignments of cyanobacteriochrome NpF2164g3 in the photoproduct state. Biomolecular NMR Assignments, 2014, 8, 259-262.	0.8	8

#	Article	IF	CITATIONS
55	Unraveling the Primary Isomerization Dynamics in Cyanobacterial Phytochrome Cph1 with Multipulse Manipulations. Journal of Physical Chemistry Letters, 2013, 4, 2605-2609.	4.6	40
56	His74 conservation in the bilin reductase PcyA family reflects an important role in protein-substrate structure and dynamics. Archives of Biochemistry and Biophysics, 2013, 537, 233-242.	3.0	6
57	Green/red cyanobacteriochromes regulate complementary chromatic acclimation via a protochromic photocycle. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 4974-4979.	7.1	147
58	Reactive Ground-State Pathways Are Not Ubiquitous in Red/Green Cyanobacteriochromes. Journal of Physical Chemistry B, 2013, 117, 11229-11238.	2.6	31
59	Primary Photodynamics of the Green/Red-Absorbing Photoswitching Regulator of the Chromatic Adaptation E Domain from <i>Fremyella diplosiphon</i> . Biochemistry, 2013, 52, 8198-8208.	2.5	34
60	Unanticipated regulatory roles for <i>Arabidopsis</i> phytochromes revealed by null mutant analysis. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 1542-1547.	7.1	107
61	Retrograde bilin signaling enables <i>Chlamydomonas</i> greening and phototrophic survival. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 3621-3626.	7.1	107
62	Phytochrome B inhibits binding of phytochromeâ€interacting factors to their target promoters. Plant Journal, 2012, 72, 537-546.	5.7	151
63	Red/Green Cyanobacteriochromes: Sensors of Color and Power. Biochemistry, 2012, 51, 9667-9677.	2.5	133
64	Ultrafast E to Z photoisomerization dynamics of the Cph1 phytochrome. Chemical Physics Letters, 2012, 549, 86-92.	2.6	18
65	Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from <i>Nostoc punctiforme</i> . 1. Forward Dynamics. Biochemistry, 2012, 51, 608-618.	2.5	81
66	Phycoviolobilin Formation and Spectral Tuning in the DXCF Cyanobacteriochrome Subfamily. Biochemistry, 2012, 51, 1449-1463.	2.5	129
67	Mechanistic Insight into the Photosensory Versatility of DXCF Cyanobacteriochromes. Biochemistry, 2012, 51, 3576-3585.	2.5	87
68	Femtosecond Photodynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from <i>Nostoc punctiforme</i> . 2. Reverse Dynamics. Biochemistry, 2012, 51, 619-630.	2.5	72
69	Second-Chance Forward Isomerization Dynamics of the Red/Green Cyanobacteriochrome NpR6012g4 from Nostoc punctiforme. Journal of the American Chemical Society, 2012, 134, 130-133.	13.7	58
70	Chemical Inhomogeneity in the Ultrafast Dynamics of the DXCF Cyanobacteriochrome Tlr0924. Journal of Physical Chemistry B, 2012, 116, 10571-10581.	2.6	31
71	Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium <i>Synechocystis</i> sp. PCC 6803. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 10780-10785.	7.1	162
72	Diverse two-cysteine photocycles in phytochromes and cyanobacteriochromes. Proceedings of the National Academy of Sciences of the United States of America, 2011, 108, 11854-11859.	7.1	182

#	Article	IF	CITATIONS
73	A Brief History of Phytochromes. ChemPhysChem, 2010, 11, 1172-1180.	2.1	320
74	Structural Insights into Vinyl Reduction Regiospecificity of Phycocyanobilin:Ferredoxin Oxidoreductase (PcyA). Journal of Biological Chemistry, 2010, 285, 1000-1007.	3.4	26
75	Climate Change and the Integrity of Science. Science, 2010, 328, 689-690.	12.6	143
76	Structural Basis for Hydration Dynamics in Radical Stabilization of Bilin Reductase Mutants. Biochemistry, 2010, 49, 6206-6218.	2.5	15
77	Biliverdin Amides Reveal Roles for Propionate Side Chains in Bilin Reductase Recognition and in Holophytochrome Assembly and Photoconversion. Biochemistry, 2010, 49, 6070-6082.	2.5	28
78	Distinct classes of red/far-red photochemistry within the phytochrome superfamily. Proceedings of the United States of America, 2009, 106, 6123-6127.	7.1	127
79	Ultrafast excited-state isomerization in phytochrome revealed by femtosecond stimulated Raman spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 1784-1789.	7.1	190
80	A Light-Independent Allele of Phytochrome B Faithfully Recapitulates Photomorphogenic Transcriptional Networks. Molecular Plant, 2009, 2, 166-182.	8.3	71
81	Homogeneity of Phytochrome Cph1 Vibronic Absorption Revealed by Resonance Raman Intensity Analysis. Journal of the American Chemical Society, 2009, 131, 13946-13948.	13.7	38
82	Structure of the Biliverdin Radical Intermediate in Phycocyanobilin:Ferredoxin Oxidoreductase Identified by High-Field EPR and DFT. Journal of the American Chemical Society, 2009, 131, 1986-1995.	13.7	38
83	A Second Conserved GAF Domain Cysteine Is Required for the Blue/Green Photoreversibility of Cyanobacteriochrome Tlr0924 from <i>Thermosynechococcus elongatus</i> . Biochemistry, 2008, 47, 7304-7316.	2.5	119
84	Light-Independent Phytochrome Signaling Mediated by Dominant GAF Domain Tyrosine Mutants of <i>Arabidopsis</i> Phytochromes in Transgenic Plants. Plant Cell, 2007, 19, 2124-2139.	6.6	128
85	Insight into the Radical Mechanism of Phycocyanobilinâ^ Ferredoxin Oxidoreductase (PcyA) Revealed by X-ray Crystallography and Biochemical Measurementsâ€. Biochemistry, 2007, 46, 1484-1494.	2.5	47
86	Flexible mapping of homology onto structure with Homolmapper. BMC Bioinformatics, 2007, 8, 123.	2.6	20
87	PHYTOCHROME STRUCTURE AND SIGNALING MECHANISMS. Annual Review of Plant Biology, 2006, 57, 837-858.	18.7	950
88	The Structure of Phytochrome: A Picture Is Worth a Thousand Spectra. Plant Cell, 2006, 18, 4-14.	6.6	100
89	Single-molecule dynamics of phytochrome-bound fluorophores probed by fluorescence correlation spectroscopy. Proceedings of the National Academy of Sciences of the United States of America, 2006, 103, 11136-11141.	7.1	31
90	A Conserved Histidine-Aspartate Pair Is Required for Exovinyl Reduction of Biliverdin by a Cyanobacterial Phycocyanobilin:Ferredoxin Oxidoreductase. Journal of Biological Chemistry, 2006, 281, 3127-3136.	3.4	23

#	Article	IF	CITATIONS
91	The Phytochromes. , 2005, , 121-149.		18
92	Multiple Roles of a Conserved GAF Domain Tyrosine Residue in Cyanobacterial and Plant Phytochromesâ€. Biochemistry, 2005, 44, 15203-15215.	2.5	89
93	Complementation of phytochrome chromophore-deficient Arabidopsis by expression of phycocyanobilin:ferredoxin oxidoreductase. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 1099-1104.	7.1	32
94	Harnessing phytochrome's glowing potential. Proceedings of the National Academy of Sciences of the United States of America, 2004, 101, 17334-17339.	7.1	166
95	RcaE is a complementary chromatic adaptation photoreceptor required for green and red light responsiveness. Molecular Microbiology, 2004, 51, 567-577.	2.5	118
96	Biliverdin Reduction by Cyanobacterial Phycocyanobilin:Ferredoxin Oxidoreductase (PcyA) Proceeds via Linear Tetrapyrrole Radical Intermediates. Journal of the American Chemical Society, 2004, 126, 8682-8693.	13.7	59
97	Engineering phytochromes: biliproteins that switch and glow. , 2004, 5329, 33.		1
98	Misregulation of tetrapyrrole biosynthesis in transgenic tobacco seedlings expressing mammalian biliverdin reductase. Plant Journal, 2003, 35, 717-728.	5.7	27
99	Phycocyanobilin:Ferredoxin Oxidoreductase ofAnabaena sp. PCC 7120. Journal of Biological Chemistry, 2003, 278, 9219-9226.	3.4	83
100	Analysis and Reconstitution of Phytochromes. , 2002, , 293-309.		0
101	Phytochrome ancestry: sensors of bilins and light. Trends in Plant Science, 2002, 7, 357-366.	8.8	260
102	Two-photon excitation of a phytofluor protein. Journal of Photochemistry and Photobiology A: Chemistry, 2002, 150, 13-19.	3.9	4
103	The Arabidopsis HY2 Gene Encodes Phytochromobilin Synthase, a Ferredoxin-Dependent Biliverdin Reductase. Plant Cell, 2001, 13, 425-436.	6.6	269
104	Functional Genomic Analysis of the HY2 Family of Ferredoxin-Dependent Bilin Reductases from Oxygenic Photosynthetic Organisms. Plant Cell, 2001, 13, 965-978.	6.6	232
105	The Arabidopsis HY2 Gene Encodes Phytochromobilin Synthase, a Ferredoxin-Dependent Biliverdin Reductase. Plant Cell, 2001, 13, 425.	6.6	19
106	Genetic engineering of phytochrome biosynthesis in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98, 10566-10571.	7.1	220
107	Purification and Biochemical Properties of Phytochromobilin Synthase from Etiolated Oat Seedlings. Plant Physiology, 2001, 126, 1546-1554.	4.8	30
108	Biliverdin Reductase-Induced Phytochrome Chromophore Deficiency in Transgenic Tobacco. Plant Physiology, 2001, 125, 266-277.	4.8	20

#	Article	IF	CITATIONS
109	Functional Genomic Analysis of the HY2 Family of Ferredoxin-Dependent Bilin Reductases from Oxygenic Photosynthetic Organisms. Plant Cell, 2001, 13, 965.	6.6	16
110	Probing the Photoreaction Mechanism of Phytochrome through Analysis of Resonance Raman Vibrational Spectra of Recombinant Analogues. Biochemistry, 2000, 39, 2667-2676.	2.5	91
111	Defining the Bilin Lyase Domain:  Lessons from the Extended Phytochrome Superfamily. Biochemistry, 2000, 39, 13487-13495.	2.5	178
112	Phytofluors: Phytochrome-Based Orange Fluorescent Protein Probes. Microscopy and Microanalysis, 1999, 5, 1050-1051.	0.4	0
113	Modification of Distinct Aspects of Photomorphogenesis via Targeted Expression of Mammalian Biliverdin Reductase in Transgenic Arabidopsis Plants. Plant Physiology, 1999, 121, 629-640.	4.8	47
114	A phytochrome from the fern Adiantum with features of the putative photoreceptor NPH1. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 15826-15830.	7.1	198
115	Eukaryotic phytochromes: Light-regulated serine/threonine protein kinases with histidine kinase ancestry. Proceedings of the National Academy of Sciences of the United States of America, 1998, 95, 13976-13981.	7.1	414
116	Regulation of Photomorphogenesis by Expression of Mammalian Biliverdin Reductase in Transgenic Arabidopsis Plants. Plant Cell, 1997, 9, 675.	6.6	1
117	Phycocyanobilin Is the Natural Precursor of the Phytochrome Chromophore in the Green Alga Mesotaenium caldariorum. Journal of Biological Chemistry, 1997, 272, 25700-25705.	3.4	67
118	A Cyanobacterial Phytochrome Two-Component Light Sensory System. Science, 1997, 277, 1505-1508.	12.6	529
119	Purification and Characterization of Recombinant Affinity Peptideâ€Tagged Oat Phytochrome A. Photochemistry and Photobiology, 1997, 65, 750-758.	2.5	45
120	The phytofluors: a new class of fluorescent protein probes. Current Biology, 1997, 7, 870-876.	3.9	111
121	Resonance Raman Analysis of Chromophore Structure in the Lumi-R Photoproduct of Phytochromeâ€. Biochemistry, 1996, 35, 15997-16008.	2.5	114
122	The methylotrophic yeast Pichia pastoris synthesizes a functionally active chromophore precursor of the plant photoreceptor phytochrome Proceedings of the National Academy of Sciences of the United States of America, 1996, 93, 8989-8994.	7.1	37
123	Atypical phytochrome gene structure in the green alga Mesotaenium caldariorum. Plant Molecular Biology, 1995, 29, 1127-1142.	3.9	92
124	(3Z)- and (3E)-Phytochromobilin Are Intermediates in the Biosynthesis of the Phytochrome Chromophore. Journal of Biological Chemistry, 1995, 270, 11111-11118.	3.4	48
125	Continuous Fluorescence Assay of Phytochrome Assembly in Vitro. Biochemistry, 1995, 34, 7923-7930.	2.5	59
126	Phytochrome assembly in living cells of the yeast Saccharomyces cerevisiae Proceedings of the National Academy of Sciences of the United States of America, 1994, 91, 12535-12539.	7.1	36

#	Article	IF	CITATIONS
127	Biosynthesis of the Plant Photoreceptor Phytochrome. Archives of Biochemistry and Biophysics, 1993, 306, 1-15.	3.0	120
128	Expression and assembly of spectrally active recombinant holophytochrome Proceedings of the National Academy of Sciences of the United States of America, 1991, 88, 10387-10391.	7.1	75
129	Calcium Transport in the Green Alga Mesotaenium caldariorum. Plant Physiology, 1990, 93, 748-757.	4.8	16
130	Phosphopeptide mapping of Avena phytochrome phosphorylated by protein kinases in vitro. Biochemistry, 1990, 29, 3872-3878.	2.5	76
131	Resonance Raman analysis of the Pr and Pfr forms of phytochrome. Biochemistry, 1990, 29, 11141-11146.	2.5	101
132	Properties of a Polycation-Stimulated Protein Kinase Associated with Purified <i>Avena</i> Phytochrome. Plant Physiology, 1989, 91, 709-718.	4.8	62
133	Self-assembly of synthetic phytochrome holoprotein in vitro. Proceedings of the National Academy of Sciences of the United States of America, 1989, 86, 5778-5780.	7.1	119
134	RESONANCE RAMAN SPECTRA OF THE P _r â€FORM OF PHYTOCHROME. Photochemistry and Photobiology, 1988, 48, 129-136.	2.5	52
135	4-Amino-5-Hexynoic Acid—A Potent Inhibitor of Tetrapyrrole Biosynthesis in Plants. Plant Physiology, 1988, 88, 747-751.	4.8	22
136	Phytochrome Chromophore Biosynthesis. Plant Physiology, 1987, 84, 304-310.	4.8	71
137	COMPARATIVE PHOTOCHEMICAL ANALYSIS OF HIGHLY PURIFIED 124 KILODALTON OAT and RYE PHYTOCHROMES <i>in vitro</i> . Photochemistry and Photobiology, 1987, 46, 5-13.	2.5	133
138	Visualization of bilin-linked peptides and proteins in polyacrylamide gels. Analytical Biochemistry, 1986, 156, 194-201.	2.4	257
139	PROGRESS IN THE MOLECULAR ANALYSIS OF PHYTOCHROME. Photochemistry and Photobiology, 1985, 42, 811-820.	2.5	85
140	Photochemistry of 124-kilodalton Avena phytochrome under constant illumination in vitro. Biochemistry, 1985, 24, 6003-6010.	2.5	136
141	Low-temperature luminescence characterization of 124-kilodalton phytochrome from Avena sativa. Biochemistry, 1983, 22, 2846-2851.	2.5	20
142	Cyclopeptide alkaloids. Conformational analysis of the dihydro-p-phencyclopeptine nucleus. Journal of the American Chemical Society, 1983, 105, 1031-1040.	13.7	10
143	Bile pigment-protein interactions. Coupled oxidation of cytochrome c. Biochemistry, 1982, 21, 5962-5967.	2.5	8
144	Chromopeptides from phytochrome. The structure and linkage of the PR form of the phytochrome chromophore. Journal of the American Chemical Society, 1980, 102, 4821-4828.	13.7	302

#	Article	IF	CITATIONS
145	Cyclopeptide alkaloids. Synthetic, spectroscopic and conformational studies of phencyclopeptine model compounds. Journal of Organic Chemistry, 1980, 45, 4813-4817.	3.2	24
146	Cyclopeptide Alkaloids. Phencyclopeptines From the Polymorphic Species Ceanothus integerrimus. Journal of Natural Products, 1979, 42, 220-227.	3.0	15
147	Cyclopeptide Alkaloids. Phencyclopeptines From Ceanothus sanguineus. Journal of Natural Products, 1979, 42, 663-668.	3.0	10
148	Chromopeptides from C-phycocyanin. Structure and linkage of a phycocyanobilin bound to the .beta. subunit. Journal of the American Chemical Society, 1979, 101, 5030-5037.	13.7	66
149	Cyclopeptide alkaloids. Synthesis of the ring system and its ion affinity. Journal of the American Chemical Society, 1978, 100, 8202-8209.	13.7	51