
Andreas A C Sander

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396786/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The earliest O-type eclipsing binary in the Small Magellanic Cloud, AzV 476: A comprehensive analysis reveals surprisingly low stellar masses. Astronomy and Astrophysics, 2022, 659, A9.	5.1	4
2	Mass-loss implementation and temperature evolution of very massive stars. Monthly Notices of the Royal Astronomical Society, 2022, 514, 3736-3753.	4.4	14
3	The First Dynamical Mass Determination of a Nitrogen-rich Wolf–Rayet Star Using a Combined Visual and Spectroscopic Orbit. Astrophysical Journal Letters, 2021, 908, L3.	8.3	8
4	Conditions in the WRÂ140 wind-collision region revealed by the 1.083-μ m He <scp>i</scp> line profile Monthly Notices of the Royal Astronomical Society, 2021, 503, 643-659.	· 4.4	6
5	Metallicity-dependent wind parameter predictions for OB stars. Monthly Notices of the Royal Astronomical Society, 2021, 504, 2051-2061.	4.4	46
6	Wind-envelope interaction as the origin of the slow cyclic brightness variations of luminous blue variables. Astronomy and Astrophysics, 2021, 647, A99.	5.1	25
7	Maximum black hole mass across cosmic time. Monthly Notices of the Royal Astronomical Society, 2021, 504, 146-154.	4.4	71
8	Evolution of Wolf–Rayet stars as black hole progenitors. Monthly Notices of the Royal Astronomical Society, 2021, 505, 4874-4889.	4.4	20
9	Superadiabaticity and the metallicity independence of the Humphreys–Davidson limit. Monthly Notices of the Royal Astronomical Society, 2021, 506, 4473-4487.	4.4	13
10	Revisiting the archetypical wind accretor Vela X-1 in depth. Astronomy and Astrophysics, 2021, 652, A95.	5.1	21
11	A meeting at <i>z</i> â^¼ 3: Young massive galaxies and an AGN within 30 kpc of the luminous QSO LBQS 0302–0019. Astronomy and Astrophysics, 2021, 653, A122.	5.1	3
12	On the nature of massive helium star winds and Wolf–Rayet-type mass-loss. Monthly Notices of the Royal Astronomical Society, 2020, 499, 873-892.	4.4	74
13	The stellar and wind parameters of six prototypical HMXBs and their evolutionary status. Astronomy and Astrophysics, 2020, 634, A49.	5.1	23
14	Why binary interaction does not necessarily dominate the formation of Wolf-Rayet stars at low metallicity. Astronomy and Astrophysics, 2020, 634, A79.	5.1	65
15	Properties of OB starâ~'black hole systems derived from detailed binary evolution models. Astronomy and Astrophysics, 2020, 638, A39.	5.1	65
16	Optical and Infrared Study of the Obscured B[e] Supergiant High-mass X-Ray Binary IGR J16318–4848*. Astrophysical Journal, 2020, 894, 86.	4.5	8
17	The Galactic WN stars revisited. Astronomy and Astrophysics, 2019, 625, A57.	5.1	77
18	Testing massive star evolution, star formation history, and feedback at low metallicity. Astronomy and Astrophysics, 2019, 625, A104.	5.1	68

#	Article	IF	CITATIONS
19	The Wolf–Rayet binaries of the nitrogen sequence in the Large Magellanic Cloud. Astronomy and Astrophysics, 2019, 627, A151.	5.1	58
20	The Galactic WC and WO stars. Astronomy and Astrophysics, 2019, 621, A92.	5.1	73
21	PoWR grids of non-LTE model atmospheres for OB-type stars of various metallicities. Astronomy and Astrophysics, 2019, 621, A85.	5.1	47
22	The extreme O-type spectroscopic binary HD 93129A. Astronomy and Astrophysics, 2019, 621, A63.	5.1	7
23	Formation of wind-captured disks in supergiant X-ray binaries. Astronomy and Astrophysics, 2019, 622, A189.	5.1	40
24	Low-metallicity massive single stars with rotation. Astronomy and Astrophysics, 2019, 623, A8.	5.1	17
25	Clumpy wind accretion in Supergiant X-ray Binaries. Proceedings of the International Astronomical Union, 2018, 14, 34-39.	0.0	1
26	Spectroscopy of complete populations of Wolf-Rayet binaries in the Magellanic Clouds. Proceedings of the International Astronomical Union, 2018, 14, 307-315.	0.0	1
27	Observational properties of massive black hole binary progenitors. Astronomy and Astrophysics, 2018, 609, A94.	5.1	18
28	The shortest-period Wolf-Rayet binary in the Small Magellanic Cloud: Part of a high-order multiple system. Astronomy and Astrophysics, 2018, 616, A103.	5.1	14
29	On the Apparent Absence of Wolf–Rayet+Neutron Star Systems: The Curious Case of WR124. Astrophysical Journal Letters, 2018, 869, L11.	8.3	15
30	Stellar population of the superbubble N 206 in the LMC. Astronomy and Astrophysics, 2018, 609, A7.	5.1	15
31	Stellar population of the superbubble N 206 in the LMC. Astronomy and Astrophysics, 2018, 615, A40.	5.1	34
32	Coupling hydrodynamics with comoving frame radiative transfer. Astronomy and Astrophysics, 2018, 610, A60.	5.1	37
33	Massive star winds and HMXB donors. Proceedings of the International Astronomical Union, 2018, 14, 17-27.	0.0	2
34	Coupling hydrodynamics with comoving frame radiative transfer. Astronomy and Astrophysics, 2017, 603, A86.	5.1	57
35	On the Binary Nature of Massive Blue Hypergiants: High-resolution X-Ray Spectroscopy Suggests That Cyg OB2 12 is a Colliding Wind Binary. Astrophysical Journal, 2017, 845, 39.	4.5	13
36	Towards a Unified View of Inhomogeneous Stellar Winds in Isolated Supergiant Stars and Supergiant High Mass X-Ray Binaries. Space Science Reviews, 2017, 212, 59-150.	8.1	86

ANDREAS A C SANDER

#	Article	IF	CITATIONS
37	The clumpy absorber in the high-mass X-ray binary Vela X-1. Astronomy and Astrophysics, 2017, 608, A143.	5.1	34
38	A combined HST and <i>XMM-Newton </i> campaign for the magnetic O9.7 V star HD 54879. Astronomy and Astrophysics, 2017, 606, A91.	5.1	25
39	The Tarantula Massive Binary Monitoring. Astronomy and Astrophysics, 2017, 598, A85.	5.1	37
40	Analysis of the WN star WR 102c, its WR nebula, and the associated cluster of massive stars in the Sickle Nebula. Astronomy and Astrophysics, 2016, 588, A9.	5.1	6
41	Wolf-Rayet stars in the Small Magellanic Cloud. Astronomy and Astrophysics, 2016, 591, A22.	5.1	63
42	Measuring the stellar wind parameters in IGR J17544-2619 and Vela X-1 constrains the accretion physics in supergiant fast X-ray transient and classical supergiant X-ray binaries. Astronomy and Astrophysics, 2016, 591, A26.	5.1	45
43	The formation of Wolf-Rayet stars in the SMC is not dominated by mass transfer. Proceedings of the International Astronomical Union, 2016, 12, 445-445.	0.0	Ο
44	The metallicity dependence of WR winds. Proceedings of the International Astronomical Union, 2016, 12, 171-175.	0.0	1
45	Stellar Winds in Massive X-ray Binaries. Proceedings of the International Astronomical Union, 2016, 12, 355-358.	0.0	Ο
46	Recent advances in non-LTE stellar atmosphere models. Proceedings of the International Astronomical Union, 2016, 12, 215-222.	0.0	1
47	Massive stars in advanced evolutionary stages, and the progenitor of GW150914. Proceedings of the International Astronomical Union, 2016, 12, 223-227.	0.0	1
48	On the consistent treatment of the quasi-hydrostatic layers in hot star atmospheres. Astronomy and Astrophysics, 2015, 577, A13.	5.1	103
49	The donor star of the X-ray pulsar X1908+075. Astronomy and Astrophysics, 2015, 578, A107.	5.1	11
50	Wolf-Rayet stars in the Small Magellanic Cloud. Astronomy and Astrophysics, 2015, 581, A21.	5.1	74
51	Potsdam Wolf-Rayet model atmosphere grids for WN stars. Astronomy and Astrophysics, 2015, 579, A75.	5.1	68
52	Discovery of a new Wolf–Rayet star and a candidate star cluster in the Large Magellanic Cloud with Spitzer. Monthly Notices of the Royal Astronomical Society, 2014, 442, 929-945.	4.4	10
53	The rapid evolution of the exciting star of the Stingray nebula. Astronomy and Astrophysics, 2014, 565, A40.	5.1	23
54	The Wolf-Rayet stars in M 31. Astronomy and Astrophysics, 2014, 563, A89.	5.1	21

#	Article	IF	CITATIONS
55	One of the most massive stars in the Galaxy may have formed in isolation. Monthly Notices of the Royal Astronomical Society, 2013, 436, 3357-3365.	4.4	23
56	Very Massive Stars in the local Universe. Proceedings of the International Astronomical Union, 2012, 10, 51-79.	0.0	17
57	The Galactic WC stars. Astronomy and Astrophysics, 2012, 540, A144.	5.1	164
58	Driving classical Wolf-Rayet winds: A Γ- and Z-dependent mass-loss. Monthly Notices of the Royal Astronomical Society, 0, , .	4.4	43