Christoph Cremer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396639/publications.pdf

Version: 2024-02-01

80 papers 5,340 citations

38 h-index 70 g-index

86 all docs 86 docs citations

86 times ranked

4388 citing authors

#	Article	IF	CITATIONS
1	Structured illumination ophthalmoscope: super-resolution microscopy on the living human eye. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210151.	3.4	3
2	Spatially modulated illumination microscopy: application perspectives in nuclear nanostructure analysis. Philosophical Transactions Series A, Mathematical, Physical, and Engineering Sciences, 2022, 380, 20210152.	3.4	3
3	Efficient Small Extracellular Vesicles (EV) Isolation Method and Evaluation of EV-Associated DNA Role in Cell–Cell Communication in Cancer. Cancers, 2022, 14, 2068.	3.7	6
4	Tackling Tumour Cell Heterogeneity at the Super-Resolution Level in Human Colorectal Cancer Tissue. Cancers, 2021, 13, 3692.	3.7	6
5	The Interchromatin Compartment Participates in the Structural and Functional Organization of the Cell Nucleus. BioEssays, 2020, 42, e1900132.	2.5	65
6	Nanoscale distribution of TLR4 on primary human macrophages stimulated with LPS and ATI. Nanoscale, 2019, 11, 9769-9779.	5.6	16
7	PMLâ€like subnuclear bodies, containing XRCC1, juxtaposed to DNA replicationâ€based singleâ€strand breaks. FASEB Journal, 2019, 33, 2301-2313.	0.5	8
8	Sample drift estimation method based on speckle patterns formed by backscattered laser light. Biomedical Optics Express, 2019, 10, 6462.	2.9	12
9	Super-resolution binding activated localization microscopy through reversible change of DNA conformation. Nucleus, 2018, 9, 182-189.	2.2	13
10	Screening of herbal extracts for TLR2- and TLR4-dependent anti-inflammatory effects. PLoS ONE, 2018, 13, e0203907.	2.5	48
11	Localization Microscopy Analyses of MRE11 Clusters in 3D-Conserved Cell Nuclei of Different Cell Lines. Cancers, 2018, 10, 25.	3.7	25
12	Nitration of Wheat Amylase Trypsin Inhibitors Increases Their Innate and Adaptive Immunostimulatory Potential in vitro. Frontiers in Immunology, 2018, 9, 3174.	4.8	24
13	Patterned illumination single molecule localization microscopy (piSMLM): user defined blinking regions of interest. Optics Express, 2018, 26, 30009.	3.4	15
14	Axial tomography in live cell laser microscopy. Journal of Biomedical Optics, 2017, 22, 091505.	2.6	14
15	Imaging chromatin nanostructure with binding-activated localization microscopy based on DNA structure fluctuations. Nucleic Acids Research, 2017, 45, gkw1301.	14.5	29
16	Super-resolution microscopy approaches to nuclear nanostructure imaging. Methods, 2017, 123, 11-32.	3.8	49
17	Super-resolved linear fluorescence localization microscopy using photostable fluorophores: A virtual microscopy study. Optics Communications, 2017, 404, 42-50.	2.1	3
18	Super-resolution microscopy with very large working distance by means of distributed aperture illumination. Scientific Reports, 2017, 7, 3685.	3.3	10

#	Article	IF	CITATIONS
19	Challenges for Super-Resolution Localization Microscopy and Biomolecular Fluorescent Nano-Probing in Cancer Research. International Journal of Molecular Sciences, 2017, 18, 2066.	4.1	33
20	Super-Resolution Localization Microscopy of \hat{I}^3 -H2AX and Heterochromatin after Folate Deficiency. International Journal of Molecular Sciences, 2017, 18, 1726.	4.1	29
21	Single Molecule Localization Microscopy of Mammalian Cell Nuclei on the Nanoscale. Frontiers in Genetics, 2016, 7, 114.	2.3	11
22	Perspectives in Super-Resolved Fluorescence Microscopy: What Comes Next?. Frontiers in Physics, 2016, 4, .	2.1	20
23	Clustered localization of EGFRvIII in glioblastoma cells as detected by high precision localization microscopy. Nanoscale, 2016, 8, 20037-20047.	5.6	22
24	Superresolution light microscopy shows nanostructure of carbon ion radiationâ€induced DNA doubleâ€strand break repair foci. FASEB Journal, 2016, 30, 2767-2776.	0.5	39
25	Subnuclear localization, rates and effectiveness of UVC-induced unscheduled DNA synthesis visualized by fluorescence widefield, confocal and super-resolution microscopy. Cell Cycle, 2016, 15, 1156-1167.	2.6	14
26	Quantitative super-resolution localization microscopy of DNA in situ using Vybrant® DyeCycleâ,,¢ Violet fluorescent probe. Data in Brief, 2016, 7, 157-171.	1.0	21
27	Cellular Uptake of Gold Nanoparticles and Their Behavior as Labels for Localization Microscopy. Biophysical Journal, 2016, 110, 947-953.	0.5	41
28	Localization microscopy of DNA in situ using Vybrant \hat{A}^{\otimes} DyeCycleâ,,¢ Violet fluorescent probe: A new approach to study nuclear nanostructure at single molecule resolution. Experimental Cell Research, 2016, 343, 97-106.	2.6	27
29	A transient ischemic environment induces reversible compaction of chromatin. Genome Biology, 2015, 16, 246.	8.8	56
30	The 4D nucleome: Evidence for a dynamic nuclear landscape based on coâ€eligned active and inactive nuclear compartments. FEBS Letters, 2015, 589, 2931-2943.	2.8	211
31	Superresolution imaging reveals structurally distinct periodic patterns of chromatin along pachytene chromosomes. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 14635-14640.	7.1	68
32	Single-Molecule Localization Microscopy allows for the analysis of cancer metastasis-specific miRNA distribution on the nanoscale. Oncotarget, 2015, 6, 44745-44757.	1.8	22
33	Single molecule localization microscopy of the distribution of chromatin using Hoechst and DAPI fluorescent probes. Nucleus, 2014, 5, 331-340.	2.2	78
34	Quantitative analysis of individual hepatocyte growth factor receptor clusters in influenza A virus infected human epithelial cells using localization microscopy. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 1191-1198.	2.6	7
35	Spatial distribution and structural arrangement of a murine cytomegalovirus glycoprotein detected by SPDM localization microscopy. Histochemistry and Cell Biology, 2014, 142, 61-67.	1.7	12
36	Recollections of a scientific journey published in human genetics: from chromosome territories to interphase cytogenetics and comparative genome hybridization. Human Genetics, 2014, 133, 403-416.	3.8	22

3

#	Article	IF	CITATIONS
37	Application perspectives of localization microscopy in virology. Histochemistry and Cell Biology, 2014, 142, 43-59.	1.7	6
38	Combination of structured illumination and single molecule localization microscopy in one setup. Journal of Optics (United Kingdom), 2013, 15, 094003.	2.2	47
39	Resolution enhancement techniques in microscopy. European Physical Journal H, 2013, 38, 281-344.	0.8	131
40	Superresolution imaging of transcription units on newt lampbrush chromosomes. Chromosome Research, 2012, 20, 1009-1015.	2.2	28
41	Optics Far Beyond the Diffraction Limit. , 2012, , 1359-1397.		15
42	Visualization and Quantitative Analysis of Reconstituted Tight Junctions Using Localization Microscopy. PLoS ONE, 2012, 7, e31128.	2.5	55
43	4D Super-Resolution Microscopy with Conventional Fluorophores and Single Wavelength Excitation in Optically Thick Cells and Tissues. PLoS ONE, 2011, 6, e20645.	2.5	133
44	Superresolution imaging of biological nanostructures by spectral precision distance microscopy. Biotechnology Journal, 2011, 6, 1037-1051.	3.5	63
45	Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures. Chromosome Research, 2011, 19, 5-23.	2.2	34
46	Lichtmikroskopie unterhalb des Abbeâ€Limits. Lokalisationsmikroskopie. Physik in Unserer Zeit, 2011, 42, 21-29.	0.0	4
47	Imaging label-free intracellular structures by localisation microscopy. Micron, 2011, 42, 348-352.	2.2	13
48	Structured illumination microscopy of autofluorescent aggregations in human tissue. Micron, 2011, 42, 330-335.	2.2	40
49	Micro axial tomography: A miniaturized, versatile stage device to overcome resolution anisotropy in fluorescence light microscopy. Review of Scientific Instruments, 2011, 82, 093701.	1.3	13
50	Epigenetic regulation of promiscuous gene expression in thymic medullary epithelial cells. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 19426-19431.	7.1	49
51	COMBO-FISH Enables High Precision Localization Microscopy as a Prerequisite for Nanostructure Analysis of Genome Loci. International Journal of Molecular Sciences, 2010, 11, 4094-4105.	4.1	29
52	Localization Microscopy Reveals Expression-Dependent Parameters ofÂChromatin Nanostructure. Biophysical Journal, 2010, 99, 1358-1367.	0.5	73
53	Functional Nuclear Architecture Studied by Microscopy. International Review of Cell and Molecular Biology, 2010, 282, 1-90.	3.2	91
54	Dual color localization microscopy of cellular nanostructures. Biotechnology Journal, 2009, 4, 927-938.	3.5	83

#	Article	IF	Citations
55	Light-Induced Dark States of Organic Fluochromes Enable 30 nm Resolution Imaging in Standard Media. Biophysical Journal, 2009, 96, L22-L24.	0.5	112
56	SPDM: single molecule superresolution of cellular nanostructures. Proceedings of SPIE, 2009, , .	0.8	21
57	High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy. Chromosome Research, 2008, 16, 367-382.	2.2	67
58	Light optical precision measurements of the active and inactive Prader–Willi syndrome imprinted regions in human cell nuclei. Differentiation, 2008, 76, 66-82.	1.9	45
59	Nanostructure analysis using spatially modulated illumination microscopy. Nature Protocols, 2007, 2, 2640-2646.	12.0	40
60	Comparison of triple helical COMBO-FISH and standard FISH by means of quantitative microscopic image analysis of abl/bcr positions in cell nuclei. Journal of Proteomics, 2007, 70, 397-406.	2.4	23
61	Chromatin domains and the interchromatin compartment form structurally defined and functionally interacting nuclear networks. Chromosome Research, 2006, 14, 707-733.	2.2	240
62	COMBO-FISH for focussed fluorescence labelling of gene domains: 3D-analysis of the genome architecture of abl and bcr in human blood cells. Cell Biology International, 2005, 29, 1038-1046.	3.0	17
63	Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes. PLoS Biology, 2005, 3, e157.	5.6	683
64	Superresolution size determination in fluorescence microscopy: A comparison between spatially modulated illumination and confocal laser scanning microscopy. Journal of Applied Physics, 2004, 95, 8436-8443.	2.5	24
65	Measuring the Size of Biological Nanostructures with Spatially Modulated Illumination Microscopy. Molecular Biology of the Cell, 2004, 15, 2449-2455.	2.1	53
66	COMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. BioTechniques, 2003, 35, 564-577.	1.8	47
67	Evolutionary conservation of chromosome territory arrangements in cell nuclei from higher primates. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 4424-4429.	7.1	357
68	High-Resolution Colocalization of Single Dye Molecules by Fluorescence Lifetime Imaging Microscopy. Analytical Chemistry, 2002, 74, 3511-3517.	6.5	107
69	Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. Applied Optics, 2002, 41, 80.	2.1	58
70	Nanosizing of fluorescent objects by spatially modulated illumination microscopy. Applied Optics, 2002, 41, 7275.	2.1	44
71	Arrangements of macro- and microchromosomes in chicken cells. Chromosome Research, 2001, 9, 569-584.	2.2	188
72	Non-random radial higher-order chromatin arrangements in nuclei of diploid human cells. Chromosome Research, 2001, 9, 541-567.	2.2	339

#	ARTICLE	IF	CITATION
73	The Influence of Formamide on Thermal Denaturation Profiles of DNA and Metaphase Chromosomes in Suspension. Zeitschrift Fur Naturforschung - Section C Journal of Biosciences, 2000, 55, 737-746.	1.4	12
74	Quantitative Motion Analysis of Subchromosomal Foci in Living Cells Using Four-Dimensional Microscopy. Biophysical Journal, 1999, 77, 2871-2886.	0.5	170
75	Immunocytochemical localization of chromatin regions UV-microirradiated in S phase or anaphase. Experimental Cell Research, 1983, 149, 257-269.	2.6	38
76	A dorso-ventral shift of embryonic primordia in a new maternal-effect mutant of Drosophila. Nature, 1980, 283, 474-476.	27.8	150
77	Localized ultraviolet laser microbeam irradiation of early Drosophila embryos: Fate maps based on location and frequency of adult defects. Developmental Biology, 1979, 68, 533-545.	2.0	49
78	A fate map for the larval epidermis of Drosophila melanogaster: localized cuticle defects following irradiation of the blastoderm with an ultraviolet laser microbeam. Developmental Biology, 1979, 73, 239-255.	2.0	301
79	Unscheduled DNA synthesis after partial UV irradiation of the cell nucleus. Experimental Cell Research, 1979, 124, 111-119.	2.6	97
80	Laser UV microirradiation of interphase nuclei and post-treatment with caffeine. Human Genetics, 1976, 35, 83-89.	3.8	49