Andrea Brand

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3396146/publications.pdf

Version: 2024-02-01

114 14,283 49 110 papers citations h-index g-index

124 124 124 124 1228

124 124 124 1228 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Escargot controls somatic stem cell maintenance through the attenuation of the insulin receptor pathway in Drosophila. Cell Reports, 2022, 39, 110679.	6.4	6
2	Reduced chromatin accessibility correlates with resistance to Notch activation. Nature Communications, 2022, 13, 2210.	12.8	5
3	NanoDam identifies Homeobrain (ARX) and Scarecrow (NKX2.1) as conserved temporal factors in the Drosophila central brain and visual system. Developmental Cell, 2022, 57, 1193-1207.e7.	7.0	14
4	Stem cell niche organization in the Drosophila ovary requires the ECM component Perlecan. Current Biology, 2021, 31, 1744-1753.e5.	3.9	19
5	The Serine Protease Homolog, Scarface, Is Sensitive to Nutrient Availability and Modulates the Development of the ⟨i⟩Drosophila⟨/i⟩ Blood–Brain Barrier. Journal of Neuroscience, 2021, 41, 6430-6448.	3.6	9
6	InÂvivo targeted DamID identifies CHD8 genomic targets in fetal mouse brain. IScience, 2021, 24, 103234.	4.1	4
7	Predicting novel candidate human obesity genes and their site of action by systematic functional screening in Drosophila. PLoS Biology, 2021, 19, e3001255.	5.6	7
8	Quiescent Neural Stem Cells for Brain Repair and Regeneration: Lessons from Model Systems. Trends in Neurosciences, 2020, 43, 213-226.	8.6	42
9	Mapping RNA–Chromatin Interactions In Vivo with RNA-DamID. Methods in Molecular Biology, 2020, 2161, 255-264.	0.9	0
10	Tailless/TLX reverts intermediate neural progenitors to stem cells driving tumourigenesis via repression of asense/ASCL1. ELife, 2020, 9, .	6.0	12
11	Neural stem cell dynamics: the development of brain tumours. Current Opinion in Cell Biology, 2019, 60, 131-138.	5.4	26
12	Epigenetic remodelling licences adult cholangiocytes for organoid formation and liver regeneration. Nature Cell Biology, 2019, 21, 1321-1333.	10.3	102
13	Stem Cell Proliferation Is Kept in Check by the Chromatin Regulators Kismet/CHD7/CHD8 and Trr/MLL3/4. Developmental Cell, 2019, 49, 556-573.e6.	7.0	25
14	TaDa! Analysing cell type-specific chromatin in vivo with Targeted DamID. Current Opinion in Neurobiology, 2019, 56, 160-166.	4.2	12
15	Dorsal-Ventral Differences in Neural Stem Cell Quiescence Are Induced by p57KIP2/Dacapo. Developmental Cell, 2019, 49, 293-300.e3.	7.0	18
16	The proneural wave in the Drosophila optic lobe is driven by an excitable reaction-diffusion mechanism. ELife, $2019,8,.$	6.0	14
17	Neural stem cell temporal patterning and brain tumour growth rely on oxidative phosphorylation. ELife, 2019, 8, .	6.0	41
18	Cell cycle heterogeneity directs the timing of neural stem cell activation from quiescence. Science, 2018, 360, 99-102.	12.6	126

#	Article	IF	CITATIONS
19	RNA-DamID reveals cell-type-specific binding of roX RNAs at chromatin-entry sites. Nature Structural and Molecular Biology, 2018, 25, 109-114.	8.2	26
20	<i>Drosophila</i> intestinal stem and progenitor cells are major sources and regulators of homeostatic niche signals. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12218-12223.	7.1	63
21	Dynamic Notch signalling regulates neural stem cell state progression in the Drosophila optic lobe. Neural Development, $2018, 13, 25$.	2.4	16
22	A newly discovered neural stem cell population is generated by the optic lobe neuroepithelium during embryogenesis in <i>Drosophila melanogaster</i> I) Development (Cambridge), 2018, 145, .	2.5	22
23	Targeted DamID reveals differential binding of mammalian pluripotency factors. Development (Cambridge), 2018, 145, .	2.5	43
24	The transcription factor SoxD controls neuronal guidance in the Drosophila visual system. Scientific Reports, 2018, 8, 13332.	3.3	15
25	Systemic and local cues drive neural stem cell niche remodelling during neurogenesis in Drosophila. ELife, 2018, 7, .	6.0	47
26	The vasculature as a neural stem cell niche. Neurobiology of Disease, 2017, 107, 4-14.	4.4	26
27	miR-7 Buffers Differentiation in the Developing Drosophila Visual System. Cell Reports, 2017, 20, 1255-1261.	6.4	25
28	Chromatin state changes during neural development revealed by in vivo cell-type specific profiling. Nature Communications, 2017, 8, 2271.	12.8	72
29	Functional Conservation of the Glide/Gcm Regulatory Network Controlling Glia, Hemocyte, and Tendon Cell Differentiation in <i>Drosophila</i> . Genetics, 2016, 202, 191-219.	2.9	18
30	The GAL4 System: A Versatile System for the Manipulation and Analysis of Gene Expression. Methods in Molecular Biology, 2016, 1478, 33-52.	0.9	60
31	damidseq_pipeline: an automated pipeline for processing DamID sequencing datasets. Bioinformatics, 2015, 31, 3371-3373.	4.1	141
32	Freedom of expression: cellâ€typeâ€specific gene profiling. Wiley Interdisciplinary Reviews: Developmental Biology, 2014, 3, 429-443.	5.9	10
33	<i>Escargot</i> maintains stemness and suppresses differentiation in <i>Drosophila</i> intestinal stem cells. EMBO Journal, 2014, 33, 2967-2982.	7.8	113
34	Regulation of <i>Drosophila</i> intestinal stem cell maintenance and differentiation by the transcription factor Escargot. EMBO Journal, 2014, 33, 2983-2996.	7.8	74
35	Control of brain development and homeostasis by local and systemic insulin signalling. Diabetes, Obesity and Metabolism, 2014, 16, 16-20.	4.4	38
36	The Transcription Factors Islet and Lim3 Combinatorially Regulate Ion Channel Gene Expression. Journal of Neuroscience, 2014, 34, 2538-2543.	3.6	24

#	Article	IF	Citations
37	Gap Junction Proteins in the Blood-Brain Barrier Control Nutrient-Dependent Reactivation of Drosophila Neural Stem Cells. Developmental Cell, 2014, 30, 309-321.	7.0	146
38	Optix defines a neuroepithelial compartment in the optic lobe of the Drosophila brain. Neural Development, 2014, 9, 18.	2.4	41
39	Male-Specific Fruitless Isoforms Target Neurodevelopmental Genes to Specify a Sexually Dimorphic Nervous System. Current Biology, 2014, 24, 229-241.	3.9	95
40	Dedifferentiation of Neurons Precedes Tumor Formation in Iola Mutants. Developmental Cell, 2014, 28, 685-696.	7.0	73
41	Cell-Type-Specific Profiling of Gene Expression and Chromatin Binding without Cell Isolation: Assaying RNA Pol II Occupancy in Neural Stem Cells. Developmental Cell, 2013, 26, 101-112.	7.0	221
42	Insulin Finds Its Niche. Science, 2013, 340, 817-818.	12.6	10
43	Snail-dependent repression of the RhoGEF pebble is required for gastrulation consistency in Drosophila melanogaster. Development Genes and Evolution, 2012, 222, 361-368.	0.9	4
44	Transcriptome Analysis of Drosophila Neural Stem Cells. Methods in Molecular Biology, 2012, 916, 99-110.	0.9	1
45	The LIM-Homeodomain Protein Islet Dictates Motor Neuron Electrical Properties by Regulating K+Channel Expression. Neuron, 2012, 75, 663-674.	8.1	38
46	Molecular Profiling of Neural Stem Cells in Drosophila melanogaster. Neuromethods, 2012, , 249-260.	0.3	1
47	Neural Stem Cell Biology in Vertebrates and Invertebrates: More Alike than Different?. Neuron, 2011, 70, 719-729.	8.1	106
48	A Novel Strategy to Isolate Ubiquitin Conjugates Reveals Wide Role for Ubiquitination during Neural Development. Molecular and Cellular Proteomics, 2011, 10, M110.002188.	3.8	77
49	Nutrient control of neural stem cells. Current Opinion in Cell Biology, 2011, 23, 724-729.	5.4	40
50	Regulating the balance between symmetric and asymmetric stem cell division in the developing brain. Fly, 2011, 5, 237-241.	1.7	55
51	An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nature Cell Biology, 2010, 12, 60-65.	10.3	216
52	Notch regulates the switch from symmetric to asymmetric neural stem cell division in the <i>Drosophila</i> optic lobe. Development (Cambridge), 2010, 137, 2981-2987.	2.5	146
53	Transcriptional control of stem cell maintenance in the <i>Drosophila < /i>intestine. Development (Cambridge), 2010, 137, 705-714.</i>	2.5	163
54	Nutrition-Responsive Glia Control Exit of Neural Stem Cells from Quiescence. Cell, 2010, 143, 1161-1173.	28.9	354

#	Article	IF	Citations
55	Transcriptional control of stem cell maintenance in the Drosophila intestine. Journal of Cell Science, 2010, 123, e1-e1.	2.0	0
56	Editorial overview. Current Opinion in Neurobiology, 2009, 19, 109-111.	4.2	0
57	Cell proliferation in the Drosophila adult brain revealed by clonal analysis and bromodeoxyuridine labelling. Neural Development, 2009, 4, 9.	2.4	31
58	Neural stem cell transcriptional networks highlight genes essential for nervous system development. EMBO Journal, 2009, 28, 3799-3807.	7.8	102
59	A new dawn for Aurora?. Nature Cell Biology, 2008, 10, 1253-1254.	10.3	2
60	Asymmetric stem cell division: Lessons from Drosophila. Seminars in Cell and Developmental Biology, 2008, 19, 283-293.	5.0	52
61	Generation of Driver and Reporter Constructs for the GAL4 Expression System in <i>Drosophila</i> Figure 1 Cold Spring Harbor Protocols, 2008, 2008, pdb.prot5029.	0.3	5
62	Forever Young: Death-Defying Neuroblasts. Cell, 2008, 133, 769-771.	28.9	6
63	The GAL4 System. Methods in Molecular Biology, 2008, 420, 79-95.	0.9	120
64	The GAL4 System: A Versatile Toolkit for Gene Expression in <i>Drosophila</i> . Cold Spring Harbor Protocols, 2008, 2008, pdb.top49.	0.3	22
65	Insights into neural stem cell biology from flies. Philosophical Transactions of the Royal Society B: Biological Sciences, 2008, 363, 39-56.	4.0	125
66	Regulation of Self-renewal and Differentiation in the Drosophila Nervous System. Cold Spring Harbor Symposia on Quantitative Biology, 2008, 73, 523-528.	1.1	12
67	folded gastrulation, cell shape change and the control of myosin localization. Development (Cambridge), 2007, 134, 4507-4507.	2.5	2
68	Detection of GFP During Nervous System Development in Drosophila melanogaster. , 2007, 411, 81-98.		3
69	Chromatin profiling in model organisms. Briefings in Functional Genomics & Proteomics, 2007, 6, 133-140.	3.8	17
70	Regulation of spindle orientation and neural stem cell fate in the Drosophila optic lobe. Neural Development, 2007, 2, 1.	2.4	205
71	Detection of in vivo protein–DNA interactions using DamlD in mammalian cells. Nature Protocols, 2007, 2, 1467-1478.	12.0	341
72	Prospero Acts as a Binary Switch between Self-Renewal and Differentiation in DrosophilaÂNeuralÂStem Cells. Developmental Cell, 2006, 11, 775-789.	7.0	348

#	Article	IF	CITATIONS
73	Staufen- and FMRP-Containing Neuronal RNPs Are Structurally and Functionally Related to Somatic P Bodies. Neuron, 2006, 52, 997-1009.	8.1	328
74	The homeobox transcription factor Even-skipped regulates acquisition of electrical properties in Drosophila neurons. Neural Development, 2006, 1, 3.	2.4	35
75	Determination of cell fate along the anteroposterior axis of the Drosophila ventral midline. Development (Cambridge), 2006, 133, 1001-1012.	2.5	27
76	The Fes/Fer non-receptor tyrosine kinase cooperates with Src42A to regulate dorsal closure in <i>Drosophila</i> . Development (Cambridge), 2006, 133, 3063-3073.	2.5	30
77	Cell differentiation. Current Opinion in Cell Biology, 2005, 17, 637-638.	5.4	0
78	folded gastrulation, cell shape change and the control of myosin localization. Development (Cambridge), 2005, 132, 4165-4178.	2.5	367
79	Turning back the clock on neural progenitors. BioEssays, 2004, 26, 711-714.	2.5	0
80	Spreading silence with Sid. Genome Biology, 2004, 5, 208.	9.6	19
81	Independent Regulation of Synaptic Size and Activity by the Anaphase-Promoting Complex. Cell, 2004, 119, 707-718.	28.9	214
82	Region-Specific Apoptosis Limits Neural Stem Cell Proliferation. Neuron, 2003, 37, 185-187.	8.1	5
83	Drosophila Nonmuscle Myosin II Promotes the Asymmetric Segregation of Cell Fate Determinants by Cortical Exclusion Rather Than Active Transport. Developmental Cell, 2003, 5, 829-840.	7.0	140
84			
	Polar Transport in the Drosophila Oocyte Requires Dynein and Kinesin I Cooperation. Current Biology, 2002, 12, 1971-1981.	3.9	205
85		3.9	205
85	2002, 12, 1971-1981.		
	2002, 12, 1971-1981. Rapid tissue-specific expression assay in living embryos. Genesis, 2002, 34, 123-126. Two-color GFP imaging demonstrates cell-autonomy of GAL4-driven RNA interference indrosophila.	1.6	12
86	Rapid tissue-specific expression assay in living embryos. Genesis, 2002, 34, 123-126. Two-color GFP imaging demonstrates cell-autonomy of GAL4-driven RNA interference indrosophila. Genesis, 2002, 34, 170-173. Imaging into the future: visualizing gene expression and protein interactions with fluorescent	1.6	12 25
86	Rapid tissue-specific expression assay in living embryos. Genesis, 2002, 34, 123-126. Two-color GFP imaging demonstrates cell-autonomy of GAL4-driven RNA interference indrosophila. Genesis, 2002, 34, 170-173. Imaging into the future: visualizing gene expression and protein interactions with fluorescent proteins. Nature Cell Biology, 2002, 4, E15-E20. Dephrin, a transmembrane ephrin with a unique structure, prevents interneuronal axons from exiting	1.6 1.6 10.3	12 25 218

#	Article	IF	CITATIONS
91	Frizzled regulates localization of cell-fate determinants and mitotic spindle rotation during asymmetric cell division. Nature Cell Biology, 2001, 3, 50-57.	10.3	222
92	Rotation and asymmetry of the mitotic spindle direct asymmetric cell division in the developing central nervous system. Nature Cell Biology, 2000, 2, 7-12.	10.3	308
93	Live Imaging with Green Fluorescent Protein. , 1999, 122, 241-260.		28
94	Mastermind Acts Downstream of Notch to Specify Neuronal Cell Fates in theDrosophilaCentral Nervous System. Developmental Biology, 1999, 205, 287-295.	2.0	36
95	In vivo dynamics of axon pathfinding in theDrosophila CNS: A time-lapse study of an identified motorneuron. Journal of Neurobiology, 1998, 37, 607-621.	3.6	62
96	Ectopic Gene Expression inDrosophilaUsing GAL4 System. Methods, 1998, 14, 367-379.	3.8	225
97	Miranda mediates asymmetric protein and RNA localization in the developing nervous system. Genes and Development, 1998, 12, 1847-1857.	5.9	226
98	Chapter 11: GFP as a Cell and Developmental Marker in the Drosophila Nervous System. Methods in Cell Biology, 1998, 58, 165-181.	1.1	20
99	In vivo dynamics of axon pathfinding in the Drosophilia CNS: a time-lapse study of an identified motorneuron. Journal of Neurobiology, 1998, 37, 607-21.	3.6	28
100	The mago nashi gene is required for the polarisation of the oocyte and the formation of perpendicular axes in Drosophila. Current Biology, 1997, 7, 468-478.	3.9	185
101	GFP in Drosophila. Trends in Genetics, 1995, 11, 324-325.	6.7	127
102	The GAL4 system as a tool for unravelling the mysteries of the Drosophila nervous system. Current Opinion in Neurobiology, 1995, 5, 572-578.	4.2	122
103	Evidence for engrailed-Independent wingless Autoregulation in Drosophila. Developmental Biology, 1995, 170, 636-650.	2.0	92
104	Chapter 33 Ectopic Expression in Drosophila. Methods in Cell Biology, 1994, 44, 635-654.	1.1	302
105	Raf acts downstream of the EGF receptor to determine dorsoventral polarity during Drosophila oogenesis Genes and Development, 1994, 8, 629-639.	5.9	180
106	Specificity of bone morphogenetic protein-related factors: cell fate and gene expression changes in Drosophila embryos induced by decapentaplegic but not 60A. Cell Growth & Differentiation: the Molecular Biology Journal of the American Association for Cancer Research, 1994, 5, 585-93.	0.8	85
107	Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development (Cambridge), 1993, 118, 401-15.	2.5	3,976
108	Generating lineage-specific markers to studyDrosophila development. Genesis, 1991, 12, 238-252.	2.1	98

#	Article	IF	CITATION
109	RAP-1 factor is necessary for DNA loop formation in vitro at the silent mating type locus HML. Cell, 1989, 57, 725-737.	28.9	208
110	A yeast silencer contains sequences that can promote autonomous plasmid replication and transcriptional activation. Cell, 1987, 51, 709-719.	28.9	360
111	Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO Journal, 1987, 6, 461-467.	7.8	223
112	Identification of silencer binding proteins from yeast: possible roles in SIR control and DNA replication. EMBO Journal, 1987, 6, 461-7.	7.8	172
113	Characterization of a "silencer―in yeast: A DNA sequence with properties opposite to those of a transcriptional enhancer. Cell, 1985, 41, 41-48.	28.9	567
114	Two new thia chalcones. Journal of Chemical & Engineering Data, 1981, 26, 230-230.	1.9	10