Xavier Periole

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3395097/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The MARTINI Coarse-Grained Force Field: Extension to Proteins. Journal of Chemical Theory and Computation, 2008, 4, 819-834.	5.3	2,178
2	Improved Parameters for the Martini Coarse-Grained Protein Force Field. Journal of Chemical Theory and Computation, 2013, 9, 687-697.	5.3	1,181
3	Lipid Organization of the Plasma Membrane. Journal of the American Chemical Society, 2014, 136, 14554-14559.	13.7	734
4	Combining an Elastic Network With a Coarse-Grained Molecular Force Field: Structure, Dynamics, and Intermolecular Recognition. Journal of Chemical Theory and Computation, 2009, 5, 2531-2543.	5.3	571
5	Martini 3: a general purpose force field for coarse-grained molecular dynamics. Nature Methods, 2021, 18, 382-388.	19.0	557
6	The power of coarse graining in biomolecular simulations. Wiley Interdisciplinary Reviews: Computational Molecular Science, 2014, 4, 225-248.	14.6	423
7	G Protein-Coupled Receptors Self-Assemble in Dynamics Simulations of Model Bilayers. Journal of the American Chemical Society, 2007, 129, 10126-10132.	13.7	298
8	Phytochemicals Perturb Membranes and Promiscuously Alter Protein Function. ACS Chemical Biology, 2014, 9, 1788-1798.	3.4	241
9	Dry Martini, a Coarse-Grained Force Field for Lipid Membrane Simulations with Implicit Solvent. Journal of Chemical Theory and Computation, 2015, 11, 260-275.	5.3	236
10	Structural Determinants of the Supramolecular Organization of G Protein-Coupled Receptors in Bilayers. Journal of the American Chemical Society, 2012, 134, 10959-10965.	13.7	199
11	Evidence for Cardiolipin Binding Sites on the Membrane-Exposed Surface of the Cytochrome <i>bc</i> ₁ . Journal of the American Chemical Society, 2013, 135, 3112-3120.	13.7	146
12	Computational â€~microscopy' of cellular membranes. Journal of Cell Science, 2016, 129, 257-68.	2.0	119
13	Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent. Journal of Chemical Physics, 2007, 126, 014903.	3.0	114
14	From light-harvesting to photoprotection: structural basis of the dynamic switch of the major antenna complex of plants (LHCII). Scientific Reports, 2015, 5, 15661.	3.3	108
15	The Martini Coarse-Grained Force Field. Methods in Molecular Biology, 2013, 924, 533-565.	0.9	107
16	A direct interaction of cholesterol with the dopamine transporter prevents its out-to-inward transition. PLoS Computational Biology, 2018, 14, e1005907.	3.2	81
17	Refining homology models by combining replicaâ€exchange molecular dynamics and statistical potentials. Proteins: Structure, Function and Bioinformatics, 2008, 72, 1171-1188.	2.6	75
18	Exchange pathways of plastoquinone and plastoquinol in the photosystem II complex. Nature Communications, 2017, 8, 15214.	12.8	71

XAVIER PERIOLE

#	Article	IF	CITATIONS
19	Improved Angle Potentials for Coarse-Grained Molecular Dynamics Simulations. Journal of Chemical Theory and Computation, 2013, 9, 3282-3292.	5.3	67
20	Comment on "On using a too large integration time step in molecular dynamics simulations of coarse-grained molecular models―by M. Winger, D. Trzesniak, R. Baron and W. F. van Gunsteren, Phys. Chem. Chem. Phys., 2009, 11, 1934. Physical Chemistry Chemical Physics, 2010, 12, 2254.	2.8	66
21	Rhodopsin Forms a Dimer with Cytoplasmic Helix 8 Contacts in Native Membranes. Biochemistry, 2012, 51, 1819-1821.	2.5	65
22	Factors That Affect the Degree of Twist in β-Sheet Structures: A Molecular Dynamics Simulation Study of a Cross-β Filament of the GNNQQNY Peptide. Journal of Physical Chemistry B, 2009, 113, 1728-1737.	2.6	59
23	Cholesterol binding to a conserved site modulates the conformation, pharmacology, and transport kinetics of the human serotonin transporter. Journal of Biological Chemistry, 2018, 293, 3510-3523.	3.4	55
24	Dimerization of Amino Acid Side Chains: Lessons from the Comparison of Different Force Fields. Journal of Chemical Theory and Computation, 2012, 8, 1003-1014.	5.3	54
25	Interplay of G Protein-Coupled Receptors with the Membrane: Insights from Supra-Atomic Coarse Grain Molecular Dynamics Simulations. Chemical Reviews, 2017, 117, 156-185.	47.7	50
26	Energetics Underlying Twist Polymorphisms in Amyloid Fibrils. Journal of Physical Chemistry B, 2018, 122, 1081-1091.	2.6	44
27	Molecular Dynamics Simulations of Transducin: Interdomain and Front to Back Communication in Activation and Nucleotide Exchange. Journal of Molecular Biology, 2004, 338, 469-481.	4.2	41
28	Atomistic and Coarse Grain Topologies for the Cofactors Associated with the Photosystem II Core Complex. Journal of Physical Chemistry B, 2015, 119, 7791-7803.	2.6	41
29	Protofibrillar Assembly Toward the Formation of Amyloid Fibrils. Journal of Physical Chemistry Letters, 2011, 2, 2385-2390.	4.6	39
30	In Silico Design of Robust Bolalipid Membranes. Biomacromolecules, 2012, 13, 196-205.	5.4	38
31	DNA-encircled lipid bilayers. Nanoscale, 2018, 10, 18463-18467.	5.6	35
32	Molecular Dynamics of Photosystem II Embedded in the Thylakoid Membrane. Journal of Physical Chemistry B, 2017, 121, 3237-3249.	2.6	34
33	Dimer Interface of the Human Serotonin Transporter and Effect of the Membrane Composition. Scientific Reports, 2018, 8, 5080.	3.3	32
34	An Amphotericin B Derivative Equally Potent to Amphotericin B and with Increased Safety. PLoS ONE, 2016, 11, e0162171.	2.5	29
35	Acidâ^'Base Equilibria in Rhodopsin:Â Dependence of the Protonation State of Glu134 on Its Environmentâ€. Biochemistry, 2004, 43, 6858-6864.	2.5	25
36	Insight into the molecular mechanism behind PEC-mediated stabilization of biofluid lipases. Scientific Reports, 2018, 8, 12293.	3.3	15

XAVIER PERIOLE

#	Article	IF	CITATIONS
37	Mimicking the action of folding chaperones by Hamiltonian replicaâ€exchange molecular dynamics simulations: Application in the refinement of de novo models. Proteins: Structure, Function and Bioinformatics, 2012, 80, 1744-1754.	2.6	14
38	Molecular Modeling Investigation of the Interaction between <i>Humicola insolens</i> Cutinase and SDS Surfactant Suggests a Mechanism for Enzyme Inactivation. Journal of Chemical Information and Modeling, 2019, 59, 1977-1987.	5.4	14
39	Molecular dynamics simulations from putative transition states of αâ€spectrin SH3 domain. Proteins: Structure, Function and Bioinformatics, 2007, 69, 536-550.	2.6	13
40	Effect of palmitoylation on the dimer formation of the human dopamine transporter. Scientific Reports, 2021, 11, 4164.	3.3	8
41	Probing the free energy landscape of the FBP28WW domain using multiple techniques. Journal of Computational Chemistry, 2009, 30, 1059-1068.	3.3	6
42	The MARTINI Force Field. , 2008, , 5-19.		3
43	A Structurally Flexible Protein Backbone for the MARTINI Coarse Grained Force Field. Biophysical Journal, 2011, 100, 613a.	0.5	1
44	Probing Self-Assembly of G Protein-Coupled Receptor Oligomers in Membranes Using Molecular Dynamics Modeling and Experimental Approaches. , 2017, , 385-414.		1