Sonia Serna

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394141/publications.pdf

Version: 2024-02-01

394421 345221 1,374 42 19 36 h-index citations g-index papers 45 45 45 1681 all docs docs citations times ranked citing authors

#	Article	IF	CITATIONS
1	Cross-reactivity of glycan-reactive HIV-1 broadly neutralizing antibodies with parasite glycans. Cell Reports, 2022, 38, 110611.	6.4	3
2	Crossâ€reactive carbohydrate determinantâ€specific lgE obscures true atopy and exhibits âºâ€1,3â€fucose epitopeâ€specific inverse associations with asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2021, 76, 233-246.	5.7	15
3	Minimal epitope for Mannitou IgM on paucimannose-carrying glycoproteins. Glycobiology, 2021, 31, 1005-1017.	2.5	3
4	Longitudinal Development of Antibody Responses in COVID-19 Patients of Different Severity with ELISA, Peptide, and Glycan Arrays: An Immunological Case Series. Pathogens, 2021, 10, 438.	2.8	21
5	FUT8-Directed Core Fucosylation of N-glycans Is Regulated by the Glycan Structure and Protein Environment. ACS Catalysis, 2021, 11, 9052-9065.	11.2	25
6	Glycosylation reduces the glycan-independent immunomodulatory effect of recombinant Orysata lectin in Drosophila S2 cells. Scientific Reports, 2021, 11, 17958.	3.3	1
7	Purification and characterization of a highly thermostable GlcNAc-binding lectin from Collaea speciosa seeds. International Journal of Biological Macromolecules, 2021, 193, 1562-1571.	7. 5	3
8	TETRALEC, Artificial Tetrameric Lectins: A Tool to Screen Ligand and Pathogen Interactions. International Journal of Molecular Sciences, 2020, 21, 5290.	4.1	13
9	Structural basis for substrate specificity and catalysis of $\hat{l}\pm 1,6$ -fucosyltransferase. Nature Communications, 2020, 11, 973.	12.8	45
10	Mass spectrometry of carbohydrate-protein interactions on a glycan array conjugated to CVD graphene surfaces. 2D Materials, 2020, 7, 024003.	4.4	10
11	Microarray assessment of N-glycan-specific IgE and IgG profiles associated with Schistosoma mansoni infection in rural and urban Uganda. Scientific Reports, 2019, 9, 3522.	3.3	14
12	Fluorescent Neoglycoprotein Gold Nanoclusters: Synthesis and Applications in Plant Lectin Sensing and Cell Imaging. Nanoscale Research Letters, 2018, 13, 360.	5.7	10
13	Measuring Bacterial Glycosyl Hydrolase Activity with a Soluble Capture Probe by Mass Spectrometry. Analytical Chemistry, 2018, 90, 12536-12543.	6.5	3
14	Onâ€Chip Screening of a Glycomimetic Library with Câ€Type Lectins Reveals Structural Features Responsible for Preferential Binding of Dectinâ€2 over DCâ€SIGN/R and Langerin. Chemistry - A European Journal, 2018, 24, 14448-14460.	3.3	16
15	Chemoenzymatic Synthesis of N-glycan Positional Isomers and Evidence for Branch Selective Binding by Monoclonal Antibodies and Human C-type Lectin Receptors. ACS Chemical Biology, 2018, 13, 2269-2279.	3.4	38
16	Fluoroacetamide Moieties as NMR Spectroscopy Probes for the Molecular Recognition of GlcNAcâ€Containing Sugars: Modulation of the CH–π Stacking Interactions by Different Fluorination Patterns. Chemistry - A European Journal, 2017, 23, 3957-3965.	3.3	33
17	Analysis of defective protein ubiquitylation associated to adriamycin resistant cells. Cell Cycle, 2017, 16, 2337-2344.	2.6	5
18	Efficient monitoring of protein ubiquitylation levels using <scp>TUBE</scp> sâ€based microarrays. FEBS Letters, 2016, 590, 2748-2756.	2.8	4

#	Article	IF	Citations
19	Influence of Core \hat{l}^2 -1,2-Xylosylation on Glycoprotein Recognition by Murine C-type Lectin Receptors and Its Impact on Dendritic Cell Targeting. ACS Chemical Biology, 2016, 11, 2347-2356.	3.4	27
20	Monitoring Glycan–Protein Interactions by NMR Spectroscopic Analysis: A Simple Chemical Tag That Mimics Natural CH–π Interactions. Chemistry - A European Journal, 2015, 21, 11408-11416.	3.3	17
21	Synthesis and Microarray-Assisted Binding Studies of Core Xylose and Fucose Containing N-Glycans. ACS Chemical Biology, 2015, 10, 1290-1302.	3.4	56
22	Algal lectin binding to core ($\hat{l}\pm 1\hat{a}\in 6$) fucosylated N-glycans: Structural basis for specificity and production of recombinant protein. Glycobiology, 2015, 25, 607-616.	2.5	17
23	Glycoarrays: An Invaluable Tool for Glycomics. , 2015, , 147-172.		0
24	Cross-platform comparison of glycan microarray formats. Glycobiology, 2014, 24, 507-517.	2.5	114
25	Biological Evaluation of Multivalent Lewis X–MGLâ€1 Interactions. ChemBioChem, 2014, 15, 844-851.	2.6	19
26	Threeâ€Dimensional Arrays Using GlycoPEG Tags: Glycan Synthesis, Purification and Immobilisation. Chemistry - A European Journal, 2013, 19, 4776-4785.	3.3	11
27	Profiling Glycosyltransferase Activities by Tritium Imaging of Glycan Microarrays. ChemBioChem, 2013, 14, 862-869.	2.6	9
28	Analysis of Microarrays by MALDIâ€₹OF MS. Angewandte Chemie - International Edition, 2013, 52, 7477-7481.	13.8	39
29	Array-assisted Characterization of a Fucosyltransferase Required for the Biosynthesis of Complex Core Modifications of Nematode N-Glycans. Journal of Biological Chemistry, 2013, 288, 21015-21028.	3.4	33
30	Fucosyltransferases as Synthetic Tools: Glycan Array Based Substrate Selection and Core Fucosylation of SyntheticN-Glycans. Journal of the American Chemical Society, 2011, 133, 16495-16502.	13.7	56
31	MALDIâ€TOF Mass Spectrometric Analysis of Enzyme Activity and Lectin Trapping on an Array of Nâ€Glycans. Angewandte Chemie - International Edition, 2011, 50, 1801-1804.	13.8	42
32	Construction of <i>N</i> â€Glycan Microarrays by Using Modular Synthesis and Onâ€Chip Nanoscale Enzymatic Glycosylation. Chemistry - A European Journal, 2010, 16, 13163-13175.	3.3	62
33	Synthesis of a core trisaccharide building block for the assembly of N-glycan neoconjugates. Tetrahedron: Asymmetry, 2009, 20, 851-856.	1.8	12
34	Application of the PIFA \hat{a} "mediated alkyne amidation reaction to the formal synthesis of ($\hat{A}\pm$)-clausenamide. Arkivoc, 2009, 2010, 7-14.	0.5	1
35	Intramolecular PIFA-Mediated Alkyne Amidation and Carboxylation Reaction. Journal of Organic Chemistry, 2007, 72, 1526-1529.	3.2	97
36	On the Phenyliodine(III)-Bis(trifluoroacetate)-Mediated Olefin Amidohydroxylation Reaction. European Journal of Organic Chemistry, 2007, 2007, 437-444.	2.4	33

SONIA SERNA

#	Article	IF	CITATION
37	Chiral [2.2.2] Dienes as Ligands for Rh(I) in Conjugate Additions of Boronic Acids to a Wide Range of Acceptors ChemInform, 2005, 36, no.	0.0	0
38	Expeditious Approach to 5-Aroyl-pyrrolidinones by a Novel PIFA-Mediated Alkyne Amidation Reaction ChemInform, 2005, 36, no.	0.0	1
39	Expeditious Approach to 5-Aroyl-pyrrolidinones by a Novel PIFA-Mediated Alkyne Amidation Reaction. Organic Letters, 2005, 7, 3073-3076.	4.6	81
40	lodine(III)-mediated aromatic amidation vs olefin amidohydroxylation. The amide N-substituent makes the difference. Tetrahedron, 2004, 60, 6533-6539.	1.9	46
41	Chiral [2.2.2] Dienes as Ligands for Rh(I) in Conjugate Additions of Boronic Acids to a Wide Range of Acceptors. Organic Letters, 2004, 6, 3873-3876.	4.6	273
42	A new and practical PIFA-promoted olefin amidohydroxylation: six- versus five-membered ring formation. Tetrahedron Letters, 2003, 44, 3483-3486.	1.4	43