
Xiaoguang Li

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3394019/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Oscillation-Induced Mixing Advances the Functionality of Liquid Marble Microreactors. ACS Applied Materials & Interfaces, 2022, 14, 11999-12009.	8.0	19
2	Highly transparent, hot water and scratch resistant, lubricant-infused slippery surfaces developed from a mechanically-weak superhydrophobic coating. Chemical Engineering Journal, 2021, 416, 127809.	12.7	44
3	Monolayer Nanoparticleâ€Covered Liquid Marble Production with Low Surface Tension Liquids. Advanced Materials Interfaces, 2020, 7, 2001081.	3.7	9
4	Liquid Plasticine Integrated with Isoelectric Focusing for Miniaturized Protein Analysis. Analytical Chemistry, 2020, 92, 9048-9056.	6.5	15
5	Mechanical robustness of monolayer nanoparticle-covered liquid marbles. Soft Matter, 2020, 16, 4632-4639.	2.7	10
6	Liquid marbles from soot films. Soft Matter, 2020, 16, 4512-4519.	2.7	15
7	On the effective surface tension of powder-derived liquid marbles. Powder Technology, 2020, 367, 608-615.	4.2	25
8	Liquid marbles and liquid plasticines with nanoparticle monolayers. Advances in Colloid and Interface Science, 2019, 271, 101988.	14.7	42
9	Rod-shaped liquid plasticine for gas diffusion detection. Soft Matter, 2019, 15, 3085-3088.	2.7	23
10	Preparation and characterization of inhomogeneous RF aerogels with continuously varying densities. Journal of Sol-Gel Science and Technology, 2019, 90, 478-486.	2.4	2
11	Revisiting the fabrication of superhydrophobic aluminum surfaces and their use as soft substrates for droplet manipulation. Journal of Materials Science, 2019, 54, 7469-7482.	3.7	10
12	Liquid Marbles: Liquid Shaping Based on Liquid Pancakes (Adv. Mater. Interfaces 2/2018). Advanced Materials Interfaces, 2018, 5, 1870008.	3.7	1
13	A Dipâ€Decoating Process for Producing Transparent Biâ€Superhydrophobic and Wrinkled Water Surfaces. Advanced Materials Interfaces, 2018, 5, 1800356.	3.7	25
14	Morphological Simulation of Phase Separation Coupled Oscillation Shear and Varying Temperature Fields. Journal of Low Temperature Physics, 2018, 191, 153-173.	1.4	4
15	Liquid Shaping Based on Liquid Pancakes. Advanced Materials Interfaces, 2018, 5, 1701139.	3.7	44
16	A capillary rise method for studying the effective surface tension of monolayer nanoparticle-covered liquid marbles. Soft Matter, 2018, 14, 9877-9884.	2.7	38
17	Dynamic behavior of droplets under interfacial jamming of nanoparticles. Applied Physics Letters, 2018, 113, .	3.3	14
18	Effective surface tension of liquid marbles using controllable nanoparticle monolayers. Applied Physics Letters, 2018, 113, 101602.	3.3	35

XIAOGUANG LI

#	Article	IF	CITATIONS
19	Superhydrophobic: A Dipâ€Decoating Process for Producing Transparent Biâ€Superhydrophobic and Wrinkled Water Surfaces (Adv. Mater. Interfaces 15/2018). Advanced Materials Interfaces, 2018, 5, 1870072.	3.7	3
20	Shape evolution and bubble formation of acoustically levitated drops. Physical Review Fluids, 2018, 3, .	2.5	26
21	Acoustic levitation of soap bubbles in air: Beyond the half-wavelength limit of sound. Applied Physics Letters, 2017, 110, .	3.3	28
22	Free-standing coating patterns fabricated by ultraviolet contact lithography using photosensitive sol-gel coatings. Optical Materials, 2017, 69, 265-273.	3.6	1
23	Liquid Marble Coalescence and Triggered Microreaction Driven by Acoustic Levitation. Langmuir, 2017, 33, 6232-6239.	3.5	77
24	Acoustic levitation of liquid drops: Dynamics, manipulation and phase transitions. Advances in Colloid and Interface Science, 2017, 243, 77-85.	14.7	83
25	Timing of polyethylene glycol addition for the control of SiO2 sol structure and sol–gel coating properties. Journal of Coatings Technology Research, 2017, 14, 447-454.	2.5	18
26	Effect of the Hartmann number on phase separation controlled by magnetic field for binary mixture system with large component ratio. European Physical Journal Plus, 2017, 132, 1.	2.6	0
27	Simulation of phase separation with large component ratio for oil-in-water emulsion in ultrasound field. Ultrasonics Sonochemistry, 2017, 36, 101-111.	8.2	16
28	Simulation of phase separation with temperature-dependent viscosity using lattice Boltzmann method. European Physical Journal E, 2017, 40, 115.	1.6	1
29	Monolayer nanoparticle-covered liquid marbles derived from a sol-gel coating. Applied Physics Letters, 2017, 111, .	3.3	35
30	Vertical vibration dynamics of acoustically levitated drop containing two immiscible liquids. Applied Physics Letters, 2016, 109, .	3.3	10
31	Superhydrophobic polytetrafluoroethylene surfaces by spray coating on porous and continuous substrates. RSC Advances, 2016, 6, 47096-47100.	3.6	10
32	Preparation and optimization of aerogel flyer-plates with graded density. Materials and Design, 2016, 110, 225-232.	7.0	7
33	Lattice Boltzmann simulation of phase separation under dynamic temperature and shear: Coupling effects of shear convection and thermal diffusion. European Physical Journal E, 2016, 39, 102.	1.6	1
34	Liquid plasticine: controlled deformation and recovery of droplets with interfacial nanoparticle jamming. Soft Matter, 2016, 12, 1655-1662.	2.7	52
35	Laser-induced damage on ordered and amorphous sol-gel silica coatings. Optical Materials Express, 2014, 4, 2478.	3.0	23
36	Template confined synthesis of Cu- or Cu ₂ O-doped SiO ₂ aerogels from Cu(<scp>ii</scp>)-containing composites by in situ alcohothermal reduction. RSC Advances, 2014, 4, 49541-49546.	3.6	9

XIAOGUANG LI

#	Article	IF	CITATIONS
37	An Abrasion-Resistant and Broadband Antireflective Silica Coating by Block Copolymer Assisted Sol–Gel Method. Langmuir, 2014, 30, 10481-10486.	3.5	41
38	Deforming water droplets with a superhydrophobic silica coating. Chemical Communications, 2013, 49, 10016.	4.1	27
39	Ultraviolet laser-induced damage on fused silica substrate and its sol-gel coating. Optics Letters, 2012, 37, 2364.	3.3	20
40	Increased Laser-Damage Resistance of Sol–Gel Silica Coating by Structure Modification. Journal of Physical Chemistry C, 2012, 116, 18367-18371.	3.1	39
41	SWCNT Networks on Nanoporous Silica Catalyst Support: Morphological and Connectivity Control for Nanoelectronic, Gas-Sensing, and Biosensing Devices. ACS Nano, 2012, 6, 5809-5819.	14.6	32
42	A facile two-step dipping process based on two silica systems for a superhydrophobic surface. Chemical Communications, 2011, 47, 10761.	4.1	37
43	The stability of sol–gel silica coatings in vacuum with organic contaminants. Journal of Sol-Gel Science and Technology, 2011, 59, 539-545.	2.4	32
44	A scratch-resistant and hydrophobic broadband antireflective coating by sol–gel method. Thin Solid Films, 2011, 519, 6236-6240.	1.8	59