Kazuki Matsubara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3393856/publications.pdf Version: 2024-02-01

Κλ71141 Μλτειιβλαλ

#	Article	IF	CITATIONS
1	Evaluation of the genetic effect of nine yield-related alleles using near-isogenic lines in the genetic backgrounds of Japanese rice cultivars. Ikushugaku Kenkyu, 2021, 23, 16-27.	0.3	4
2	Editorial: Reproductive Barriers and Gene Introgression in Rice Species. Frontiers in Plant Science, 2021, 12, 699761.	3.6	2
3	How Hybrid Breakdown Can Be Handled in Rice Crossbreeding?. Frontiers in Plant Science, 2020, 11, 575412.	3.6	8
4	Late flowering in F1 hybrid rice brought about by the complementary effect of quantitative trait loci. Genetica, 2019, 147, 351-358.	1.1	2
5	Mapping of QTLs associated with lodging resistance in rice (Oryza sativa L.) using the recombinant inbred lines derived from two high yielding cultivars, Tachisugata and Hokuriku 193. Plant Growth Regulation, 2019, 87, 267-276.	3.4	5
6	Genetic and Molecular Dissection of Flowering Time Control in Rice. , 2018, , 177-190.		7
7	A follow-up study for biomass yield QTLs in rice. PLoS ONE, 2018, 13, e0206054.	2.5	5
8	Improvement of Rice Biomass Yield through QTL-Based Selection. PLoS ONE, 2016, 11, e0151830.	2.5	25
9	Genetic control of flowering time in rice: integration of Mendelian genetics and genomics. Theoretical and Applied Genetics, 2016, 129, 2241-2252.	3.6	111
10	A novel <i>Tos17</i> insertion upstream of <i>Hd1</i> alters flowering time in rice. Plant Breeding, 2016, 135, 588-592.	1.9	4
11	Advanced backcross QTL analysis reveals complicated genetic control of rice grain shape in a <i>japonica</i> × <i>indica</i> cross. Breeding Science, 2015, 65, 308-318.	1.9	56
12	Genetic architecture of variation in heading date among Asian rice accessions. BMC Plant Biology, 2015, 15, 115.	3.6	43
13	Expression level of the sodium transporter gene <i>OsHKT2;1</i> determines sodium accumulation of rice cultivars under potassium-deficient conditions. Soil Science and Plant Nutrition, 2015, 61, 481-492.	1.9	16
14	Hybrid Breakdown Caused by Epistasis-Based Recessive Incompatibility in a Cross of Rice (Oryza sativa) Tj ETQq0)00 _{2.4} gBT	/Overlock 10
15	Cloning of quantitative trait genes from rice reveals conservation and divergence of photoperiod flowering pathways in Arabidopsis and rice. Frontiers in Plant Science, 2014, 5, 193.	3.6	59
16	Genomic regions involved in yield potential detected by genome-wide association analysis in Japanese high-yielding rice cultivars. BMC Genomics, 2014, 15, 346.	2.8	29
17	<i><scp>H</scp>d16</i> , a gene for casein kinase <scp>I</scp> , is involved in the control of rice flowering time by modulating the dayâ€length response. Plant Journal, 2013, 76, 36-46.	5.7	177
18	Natural Variation of the RICE FLOWERING LOCUS T 1 Contributes to Flowering Time Divergence in Rice. PLoS ONE, 2013, 8, e75959.	2.5	94

Kazuki Matsubara

#	Article	IF	CITATIONS
19	Web-Structured All-Solid PBG Fiber. , 2013, , .		ο
20	Ef7 Encodes an ELF3-like Protein and Promotes Rice Flowering by Negatively Regulating the Floral Repressor Gene Ghd7 under Both Short- and Long-Day Conditions. Plant and Cell Physiology, 2012, 53, 717-728.	3.1	113
21	Natural Variation in Hd17, a Homolog of Arabidopsis ELF3 That is Involved in Rice Photoperiodic Flowering. Plant and Cell Physiology, 2012, 53, 709-716.	3.1	177
22	Complex genetic nature of sex-independent transmission ratio distortion in Asian rice species: the involvement of unlinked modifiers and sex-specific mechanisms. Heredity, 2012, 108, 242-247.	2.6	29
23	<i>Ehd3</i> , encoding a plant homeodomain fingerâ€containing protein, is a critical promoter of rice flowering. Plant Journal, 2011, 66, 603-612.	5.7	182
24	Relationship between transmission ratio distortion and genetic divergence in intraspecific rice crosses. Molecular Genetics and Genomics, 2011, 286, 307-319.	2.1	26
25	Uncovering of major genetic factors generating naturally occurring variation in heading date among Asian rice cultivars. Theoretical and Applied Genetics, 2011, 122, 1199-1210.	3.6	65
26	Detection of quantitative trait loci controlling pre-harvest sprouting resistance by using backcrossed populations of japonica rice cultivars. Theoretical and Applied Genetics, 2010, 120, 1547-1557.	3.6	67
27	Diversification in flowering time due to tandem <i>FTâ€like</i> gene duplication, generating novel Mendelian factors in wild and cultivated rice. Molecular Ecology, 2009, 18, 1537-1549.	3.9	33
28	Epistasis among the three major flowering time genes in rice: coordinate changes of photoperiod sensitivity, basic vegetative growth and optimum photoperiod. Euphytica, 2008, 163, 167-175.	1.2	28
29	Two loosely linked genes controlling the female specificity for cross-incompatibility in rice. Euphytica, 2008, 164, 753-760.	1.2	5
30	Novel QTLs for photoperiodic flowering revealed by using reciprocal backcross inbred lines from crosses between japonica rice cultivars. Theoretical and Applied Genetics, 2008, 117, 935-945.	3.6	79
31	Rice α-glucosidase isozymes and isoforms showing different starch granules-binding and -degrading ability. Biocatalysis and Biotransformation, 2008, 26, 104-110.	2.0	7
32	<i>Ehd2</i> , a Rice Ortholog of the Maize <i>INDETERMINATE1</i> Gene, Promotes Flowering by Up-Regulating <i>Ehd1</i> A Â. Plant Physiology, 2008, 148, 1425-1435.	4.8	250
33	The Evolution of Sex-Independent Transmission Ratio Distortion Involving Multiple Allelic Interactions at a Single Locus in Rice. Genetics, 2008, 180, 409-420.	2.9	48
34	Function-unknown Glycoside Hydrolase Family 31 Proteins, mRNAs of which were Expressed in Rice Ripening and Germinating Stages, are Â-Glucosidase and Â-Xylosidase. Journal of Biochemistry, 2007, 142, 491-500.	1.7	18
35	Multiple forms of α-glucosidase in rice seeds (Oryza sativa L., var Nipponbare). Biochimie, 2007, 89, 49-62.	2.6	27
36	Development of Chromosome Segment Substitution Lines Derived from Backcross between indica Donor Rice Cultivar 'Nona Bokra' and japonica Recipient Cultivar 'Koshihikari'. Breeding Science, 2007, 57, 257-261.	1.9	78

#	ARTICLE	IF	CITATIONS
37	Identification and linkage mapping of complementary recessive genes causing hybrid breakdown in an intraspecific rice cross. Theoretical and Applied Genetics, 2007, 115, 179-186.	3.6	43
38	A Gene Block Causing Cross-Incompatibility Hidden in Wild and Cultivated Rice. Genetics, 2003, 165, 343-352.	2.9	33