Elisabete Coelho

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3393447/publications.pdf

Version: 2024-02-01

46 papers

1,817 citations

218677 26 h-index 265206 42 g-index

46 all docs

46 docs citations

times ranked

46

2257 citing authors

#	Article	IF	CITATIONS
1	Isolation and identification of an arabinogalactan extracted from pistachio external hull: Assessment of immunostimulatory activity. Food Chemistry, 2022, 373, 131416.	8.2	11
2	Brewer's yeast polysaccharides â€" A review of their exquisite structural features and biomedical applications. Carbohydrate Polymers, 2022, 277, 118826.	10.2	23
3	Evaluation of Microbial-Fructo-Oligosaccharides Metabolism by Human Gut Microbiota Fermentation as Compared to Commercial Inulin-Derived Oligosaccharides. Foods, 2022, 11, 954.	4.3	13
4	Food Ingredients Derived from Lemongrass Byproduct Hydrodistillation: Essential Oil, Hydrolate, and Decoction. Molecules, 2022, 27, 2493.	3.8	9
5	Hydrolysates containing xylooligosaccharides produced by different strategies: Structural characterization, antioxidant and prebiotic activities. Food Chemistry, 2022, 391, 133231.	8.2	7
6	Sources of carbohydrates on bulk deposition in South-Western of Europe. Chemosphere, 2021, 263, 127982.	8.2	3
7	Structural elucidation and interfacial properties of a levan isolated from Bacillus mojavensis. Food Chemistry, 2021, 343, 128456.	8.2	33
8	Concentrate Apple Juice Industry: Aroma and Pomace Valuation as Food Ingredients. Applied Sciences (Switzerland), 2021, 11, 2443.	2.5	5
9	Phenolic profile, safety assessment, and anti-inflammatory activity of Salvia verbenaca L Journal of Ethnopharmacology, 2021, 272, 113940.	4.1	20
10	Microwave hydrodiffusion and gravity as a sustainable alternative approach for an efficient apple pomace drying. Bioresource Technology, 2021, 333, 125207.	9.6	11
11	Insights on Single-Dose Espresso Coffee Capsules' Volatile Profile: From Ground Powder Volatiles to Prediction of Espresso Brew Aroma Properties. Foods, 2021, 10, 2508.	4.3	13
12	Migration of Tannins and Pectic Polysaccharides from Natural Cork Stoppers to the Hydroalcoholic Solution. Journal of Agricultural and Food Chemistry, 2020, 68, 14230-14242.	5.2	7
13	Physicochemical Fingerprint of "Pera Rocha do Oeste― A PDO Pear Native from Portugal. Foods, 2020, 9, 1209.	4.3	11
14	Antioxidant and antimicrobial films based on brewers spent grain arabinoxylans, nanocellulose and feruloylated compounds for active packaging. Food Hydrocolloids, 2020, 108, 105836.	10.7	68
15	Sarcocornia perennis pectic polysaccharides orally administered to mice: Holistic histological evaluation of xenobiotic protection. International Journal of Biological Macromolecules, 2020, 154, 150-158.	7.5	5
16	Thymus algeriensis Bioss & Divide the Relationship of phenolic compounds composition with in vitro/in vivo antioxidant and antibacterial activity. Food Research International, 2020, 136, 109500.	6.2	25
17	Apple Pomace Extract as a Sustainable Food Ingredient. Antioxidants, 2019, 8, 189.	5.1	61
18	Compositional Features and Bioactive Properties of Aloe vera Leaf (Fillet, Mucilage, and Rind) and Flower. Antioxidants, 2019, 8, 444.	5.1	56

#	Article	IF	Citations
19	Contribution of non-enzymatic transglycosylation reactions to the honey oligosaccharides origin and diversity. Pure and Applied Chemistry, 2019, 91, 1231-1242.	1.9	9
20	Lipidomic Signatures Reveal Seasonal Shifts on the Relative Abundance of High-Valued Lipids from the Brown Algae Fucus vesiculosus. Marine Drugs, 2019, 17, 335.	4.6	53
21	Chemical composition and antimicrobial activity of Satureja montana byproducts essential oils. Industrial Crops and Products, 2019, 137, 541-548.	5.2	20
22	Revisiting the chemistry of apple pomace polyphenols. Food Chemistry, 2019, 294, 9-18.	8.2	52
23	Process development for the production of prebiotic fructo-oligosaccharides by penicillium citreonigrum. Bioresource Technology, 2019, 282, 464-474.	9.6	40
24	Downscale fermentation for xylooligosaccharides production by recombinant Bacillus subtilis 3610. Carbohydrate Polymers, 2019, 205, 176-183.	10.2	22
25	Arabinoxylans from cereal by-products. , 2018, , 227-251.		12
26	In vitro digestibility and fermentability of fructo-oligosaccharides produced by Aspergillus ibericus. Journal of Functional Foods, 2018, 46, 278-287.	3.4	38
27	Waste mitigation: From an effluent of apple juice concentrate industry to a valuable ingredient for food and feed applications. Journal of Cleaner Production, 2018, 193, 652-660.	9.3	34
28	Single-step production of arabino-xylooligosaccharides by recombinant Bacillus subtilis 3610 cultivated in brewers' spent grain. Carbohydrate Polymers, 2018, 199, 546-554.	10.2	31
29	Xylo-oligosaccharides display a prebiotic activity when used to supplement wheat or corn-based diets for broilers. Poultry Science, 2018, 97, 4330-4341.	3.4	7 3
30	Carbohydrate content, dietary fibre and melanoidins: Composition of espresso from single-dose coffee capsules. Food Research International, 2016, 89, 989-996.	6.2	37
31	Revisiting the structural features of arabinoxylans from brewers' spent grain. Carbohydrate Polymers, 2016, 139, 167-176.	10.2	58
32	Improved efficiency of brewer's spent grain arabinoxylans by ultrasound-assisted extraction. Ultrasonics Sonochemistry, 2015, 24, 155-164.	8.2	56
33	Influence of grain particle sizes on the structure of arabinoxylans from brewer's spent grain. Carbohydrate Polymers, 2015, 130, 222-226.	10.2	17
34	Modifications of Saccharomyces pastorianus cell wall polysaccharides with brewing process. Carbohydrate Polymers, 2015, 124, 322-330.	10.2	43
35	Valuation of brewers spent yeast polysaccharides: A structural characterization approach. Carbohydrate Polymers, 2015, 116, 215-222.	10.2	57
36	Microwave superheated water and dilute alkali extraction of brewers' spent grain arabinoxylans and arabinoxylo-oligosaccharides. Carbohydrate Polymers, 2014, 99, 415-422.	10.2	91

#	Article	IF	CITATIONS
37	Valuation of brewer's spent grain using a fully recyclable integrated process for extraction of proteins and arabinoxylans. Industrial Crops and Products, 2014, 52, 136-143.	5.2	95
38	Foamability and Foam Stability of Molecular Reconstituted Model Sparkling Wines. Journal of Agricultural and Food Chemistry, 2011, 59, 8770-8778.	5.2	32
39	Synergistic Effect of High and Low Molecular Weight Molecules in the Foamability and Foam Stability of Sparkling Wines. Journal of Agricultural and Food Chemistry, 2011, 59, 3168-3179.	5.2	41
40	Relationships between the varietal volatile composition of the musts and white wine aroma quality. A four year feasibility study. LWT - Food Science and Technology, 2010, 43, 1508-1516.	5.2	23
41	Quantification approach for assessment of sparkling wine volatiles from different soils, ripening stages, and varieties by stir bar sorptive extraction with liquid desorption. Analytica Chimica Acta, 2009, 635, 214-221.	5. 4	98
42	Optimisation of stir bar sorptive extraction and liquid desorption combined with large volume injection-gas chromatography–quadrupole mass spectrometry for the determination of volatile compounds in wines. Analytica Chimica Acta, 2008, 624, 79-89.	5.4	57
43	Comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry of monoterpenoids as a powerful tool for grape origin traceability. Journal of Chromatography A, 2007, 1161, 292-299.	3.7	111
44	Screening of variety- and pre-fermentation-related volatile compounds during ripening of white grapes to define their evolution profile. Analytica Chimica Acta, 2007, 597, 257-264.	5.4	68
45	Headspace-SPME applied to varietal volatile components evolution during Vitis vinifera L. cv. â€~Baga' ripening. Analytica Chimica Acta, 2006, 563, 204-214.	5.4	130
46	Quantification of polymeric mannose in wine extracts by FT-IR spectroscopy and OSC-PLS1 regression. Carbohydrate Polymers, 2005, 61, 434-440.	10.2	38