List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391728/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental Analysis of the Arabidopsis Mitochondrial Proteome Highlights Signaling and Regulatory Components, Provides Assessment of Targeting Prediction Programs, and Indicates Plant-Specific Mitochondrial Proteins Â[W]. Plant Cell, 2004, 16, 241-256.	6.6	550
2	The impact of oxidative stress on Arabidopsis mitochondria. Plant Journal, 2002, 32, 891-904.	5.7	478
3	SUBA: the Arabidopsis Subcellular Database. Nucleic Acids Research, 2007, 35, D213-D218.	14.5	394
4	PhosPhAt: the Arabidopsis thaliana phosphorylation site database. An update. Nucleic Acids Research, 2010, 38, D828-D834.	14.5	346
5	Enzymes of Glycolysis Are Functionally Associated with the Mitochondrion in Arabidopsis Cells. Plant Cell, 2003, 15, 2140-2151.	6.6	345
6	Control of Ascorbate Synthesis by Respiration and Its Implications for Stress Responses. Plant Physiology, 2003, 133, 443-447.	4.8	328
7	PhosPhAt: a database of phosphorylation sites in Arabidopsis thaliana and a plant-specific phosphorylation site predictor. Nucleic Acids Research, 2007, 36, D1015-D1021.	14.5	302
8	AtMYB32 is required for normal pollen development in Arabidopsis thaliana. Plant Journal, 2004, 40, 979-995.	5.7	289
9	Differential Impact of Environmental Stresses on the Pea Mitochondrial Proteome. Molecular and Cellular Proteomics, 2005, 4, 1122-1133.	3.8	231
10	The rice immune receptor XA21 recognizes a tyrosine-sulfated protein from a Gram-negative bacterium. Science Advances, 2015, 1, e1500245.	10.3	209
11	Towards an Analysis of the Rice Mitochondrial Proteome. Plant Physiology, 2003, 132, 230-242.	4.8	194
12	The plant mitochondrial proteome. Trends in Plant Science, 2005, 10, 36-43.	8.8	188
13	Genomic and Proteomic Analysis of Mitochondrial Carrier Proteins in Arabidopsis. Plant Physiology, 2003, 131, 443-453.	4.8	185
14	Mitochondrial cytochrome c oxidase and succinate dehydrogenase complexes contain plant specific subunits. Plant Molecular Biology, 2004, 56, 77-90.	3.9	184
15	Mitochondrial complex I from Arabidopsis and rice: orthologs of mammalian and fungal components coupled with plant-specific subunits. Biochimica Et Biophysica Acta - Bioenergetics, 2003, 1604, 159-169.	1.0	180
16	Lipoic Acid-Dependent Oxidative Catabolism of α-Keto Acids in Mitochondria Provides Evidence for Branched-Chain Amino Acid Catabolism in Arabidopsis. Plant Physiology, 2004, 134, 838-848.	4.8	176
17	Analysis of the Arabidopsis Cytosolic Ribosome Proteome Provides Detailed Insights into Its Components and Their Post-translational Modification. Molecular and Cellular Proteomics, 2008, 7, 347-369.	3.8	175
18	Novel Proteins, Putative Membrane Transporters, and an Integrated Metabolic Network Are Revealed by Quantitative Proteomic Analysis of Arabidopsis Cell Culture Peroxisomes Â. Plant Physiology, 2008, 148, 1809-1829.	4.8	169

#	Article	IF	CITATIONS
19	Isolation and Proteomic Characterization of the Arabidopsis Golgi Defines Functional and Novel Components Involved in Plant Cell Wall Biosynthesis Â. Plant Physiology, 2012, 159, 12-26.	4.8	164
20	The Scope, Functions, and Dynamics of Posttranslational Protein Modifications. Annual Review of Plant Biology, 2019, 70, 119-151.	18.7	158
21	The seminal fluid proteome of the honeybee <i>Apis mellifera</i> . Proteomics, 2009, 9, 2085-2097.	2.2	152
22	A Transcriptomic and Proteomic Characterization of the Arabidopsis Mitochondrial Protein Import Apparatus and Its Response to Mitochondrial Dysfunction. Plant Physiology, 2004, 134, 777-789.	4.8	148
23	An XA21-Associated Kinase (OsSERK2) Regulates Immunity Mediated by the XA21 and XA3 Immune Receptors. Molecular Plant, 2014, 7, 874-892.	8.3	129
24	A plant outer mitochondrial membrane protein with high amino acid sequence identity to a chloroplast protein import receptor. FEBS Letters, 2004, 557, 109-114.	2.8	126
25	Combining Experimental and Predicted Datasets for Determination of the Subcellular Location of Proteins in Arabidopsis. Plant Physiology, 2005, 139, 598-609.	4.8	120
26	The products of the mitochondrial orf25 and orfB genes are FO components in the plant F1 FO ATP synthase. FEBS Letters, 2003, 540, 201-205.	2.8	114
27	Analysis of the <i>Arabidopsis</i> Cytosolic Proteome Highlights Subcellular Partitioning of Central Plant Metabolism. Journal of Proteome Research, 2011, 10, 1571-1582.	3.7	113
28	The Golgi localized bifunctional UDP-rhamnose/UDP-galactose transporter family of <i>Arabidopsis</i> . Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 11563-11568.	7.1	113
29	Transgenic Expression of the Dicotyledonous Pattern Recognition Receptor EFR in Rice Leads to Ligand-Dependent Activation of Defense Responses. PLoS Pathogens, 2015, 11, e1004809.	4.7	103
30	MASCP Gator: An Aggregation Portal for the Visualization of Arabidopsis Proteomics Data. Plant Physiology, 2011, 155, 259-270.	4.8	94
31	<i>Defective Pollen Wall 2</i> (<i>DPW2</i>) Encodes an Acyl Transferase Required for Rice Pollen Development. Plant Physiology, 2017, 173, 240-255.	4.8	92
32	An Integrative Approach to the Identification of Arabidopsis and Rice Genes Involved in Xylan and Secondary Wall Development. PLoS ONE, 2010, 5, e15481.	2.5	82
33	Identification of a Sphingolipid α-Glucuronosyltransferase That Is Essential for Pollen Function in <i>Arabidopsis</i> Â Â Â. Plant Cell, 2014, 26, 3314-3325.	6.6	80
34	A survey of the <i>Arabidopsis thaliana</i> mitochondrial phosphoproteome. Proteomics, 2009, 9, 4229-4240.	2.2	78
35	The Cytotoxic Lipid Peroxidation Product 4-Hydroxy-2-nonenal Covalently Modifies a Selective Range of Proteins Linked to Respiratory Function in Plant Mitochondria. Journal of Biological Chemistry, 2007, 282, 37436-37447.	3.4	76
36	Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metabolic Engineering, 2018, 47, 170-183.	7.0	76

#	Article	IF	CITATIONS
37	Changes in the Mitochondrial Proteome during the Anoxia to Air Transition in Rice Focus around Cytochrome-containing Respiratory Complexes. Journal of Biological Chemistry, 2004, 279, 39471-39478.	3.4	71
38	The companion of cellulose synthase 1 confers salt tolerance through a Tau-like mechanism in plants. Nature Communications, 2019, 10, 857.	12.8	71
39	Analysis of the Rice Mitochondrial Carrier Family Reveals Anaerobic Accumulation of a Basic Amino Acid Carrier Involved in Arginine Metabolism during Seed Germination Â. Plant Physiology, 2010, 154, 691-704.	4.8	67
40	The plant glycosyltransferase clone collection for functional genomics. Plant Journal, 2014, 79, 517-529.	5.7	67
41	The <i>Arabidopsis thaliana</i> 2â€D gel mitochondrial proteome: Refining the value of reference maps for assessing protein abundance, contaminants and postâ€translational modifications. Proteomics, 2011, 11, 1720-1733.	2.2	63
42	Identification and Characterization of a Golgi-Localized UDP-Xylose Transporter Family from Arabidopsis. Plant Cell, 2015, 27, 1218-1227.	6.6	61
43	Analysis of the Soluble ATP-Binding Proteome of Plant Mitochondria Identifies New Proteins and Nucleotide Triphosphate Interactions within the Matrix. Journal of Proteome Research, 2006, 5, 3459-3469.	3.7	60
44	UUAT1 Is a Golgi-Localized UDP-Uronic Acid Transporter That Modulates the Polysaccharide Composition of Arabidopsis Seed Mucilage. Plant Cell, 2017, 29, 129-143.	6.6	60
45	AMPDB: the Arabidopsis Mitochondrial Protein Database. Nucleic Acids Research, 2004, 33, D605-D610.	14.5	59
46	Mitochondrial acyl carrier proteins in Arabidopsis thaliana are predominantly soluble matrix proteins and none can be confirmed as subunits of respiratory Complex I. Plant Molecular Biology, 2007, 64, 319-327.	3.9	59
47	Role of UDP-Glucuronic Acid DecarboxylaseÂin Xylan Biosynthesis in Arabidopsis. Molecular Plant, 2016, 9, 1119-1131.	8.3	57
48	Proteomic identification of divalent metal cation binding proteins in plant mitochondria. FEBS Letters, 2003, 537, 96-100.	2.8	56
49	The Arabidopsis Golgi-localized GDP-L-fucose transporter is required for plant development. Nature Communications, 2016, 7, 12119.	12.8	53
50	The elaborate route for UDP-arabinose delivery into the Golgi of plants. Proceedings of the National Academy of Sciences of the United States of America, 2017, 114, 4261-4266.	7.1	52
51	Identification of intra―and intermolecular disulphide bonding in the plant mitochondrial proteome by diagonal gel electrophoresis. Proteomics, 2007, 7, 4158-4170.	2.2	51
52	Analysis of plant nucleotide sugars by hydrophilic interaction liquid chromatography and tandem mass spectrometry. Analytical Biochemistry, 2014, 448, 14-22.	2.4	49
53	Expansin-Like Molecules: Novel Functions Derived from Common Domains. Journal of Molecular Evolution, 2002, 54, 587-594.	1.8	48
54	Free-Flow Electrophoresis of Plasma Membrane Vesicles Enriched by Two-Phase Partitioning Enhances the Quality of the Proteome from <i>Arabidopsis</i> Seedlings. Journal of Proteome Research, 2016, 15, 900-913.	3.7	47

#	Article	IF	CITATIONS
55	A Signaling-Regulated, Short-Chain Dehydrogenase of <i>Stagonospora nodorum</i> Regulates Asexual Development. Eukaryotic Cell, 2008, 7, 1916-1929.	3.4	45
56	Integrated plant proteomics — putting the green genomes to work. Functional Plant Biology, 2003, 30, 471.	2.1	44
57	Standard Flow Liquid Chromatography for Shotgun Proteomics in Bioenergy Research. Frontiers in Bioengineering and Biotechnology, 2015, 3, 44.	4.1	44
58	Multiple marker abundance profiling: combining selected reaction monitoring and dataâ€dependent acquisition for rapid estimation of organelle abundance in subcellular samples. Plant Journal, 2017, 92, 1202-1217.	5.7	42
59	Separating Golgi Proteins from <i>Cis</i> to <i>Trans</i> Reveals Underlying Properties of Cisternal Localization. Plant Cell, 2019, 31, 2010-2034.	6.6	40
60	Engineering temporal accumulation of a low recalcitrance polysaccharide leads to increased C6 sugar content in plant cell walls. Plant Biotechnology Journal, 2015, 13, 903-914.	8.3	37
61	N-linked Glycan Micro-heterogeneity in Glycoproteins of Arabidopsis. Molecular and Cellular Proteomics, 2018, 17, 413-421.	3.8	37
62	Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry, 2004, 65, 1517-1530.	2.9	36
63	The Three Members of the Arabidopsis Glycosyltransferase Family 92 are Functional β-1,4-Galactan Synthases. Plant and Cell Physiology, 2018, 59, 2624-2636.	3.1	35
64	Glycome and Proteome Components of Golgi Membranes Are Common between Two Angiosperms with Distinct Cell-Wall Structures. Plant Cell, 2019, 31, 1094-1112.	6.6	35
65	Structural and Chemical Characterization of Hardwood from Tree Species with Applications as Bioenergy Feedstocks. PLoS ONE, 2012, 7, e52820.	2.5	32
66	Secretome analysis of the thermophilic xylanase hyper-producer <i>Thermomyces lanuginosus</i> SSBP cultivated on corn cobs. Journal of Industrial Microbiology and Biotechnology, 2014, 41, 1687-1696.	3.0	32
67	Exploiting members of the BAHD acyltransferase family to synthesize multiple hydroxycinnamate and benzoate conjugates in yeast. Microbial Cell Factories, 2016, 15, 198.	4.0	32
68	A DUF-246 family glycosyltransferase-like gene affects male fertility and the biosynthesis of pectic arabinogalactans. BMC Plant Biology, 2016, 16, 90.	3.6	32
69	AtAPY1 and AtAPY2 Function as Golgi-Localized Nucleoside Diphosphatases in Arabidopsis thaliana. Plant and Cell Physiology, 2012, 53, 1913-1925.	3.1	30
70	The MultinationalArabidopsisSteering Subcommittee for Proteomics Assembles the Largest Proteome Database Resource for Plant Systems Biology. Journal of Proteome Research, 2008, 7, 4209-4210.	3.7	29
71	A Golgi UDP-GlcNAc transporter delivers substrates for N-linked glycans and sphingolipids. Nature Plants, 2018, 4, 792-801.	9.3	27
72	The Green Proteome: Challenges in Plant Proteomics. Frontiers in Plant Science, 2011, 2, 6.	3.6	26

#	Article	IF	CITATIONS
73	Characterization of protein N-glycosylation by tandem mass spectrometry using complementary fragmentation techniques. Frontiers in Plant Science, 2015, 6, 674.	3.6	26
74	Isolation and Subfractionation of Plant Mitochondria for Proteomic Analysis. , 2007, 355, 49-62.		24
75	Proteomic identification of extracellular proteins regulated by the Gna1 Gα subunit in Stagonospora nodorum. Mycological Research, 2009, 113, 523-531.	2.5	24
76	Structural characterization of a mixed-linkage glucan deficient mutant reveals alteration in cellulose microfibril orientation in rice coleoptile mesophyll cell walls. Frontiers in Plant Science, 2015, 6, 628.	3.6	24
77	Combining multivariate analysis and monosaccharide composition modeling to identify plant cell wall variations by Fourier Transform Near Infrared spectroscopy. Plant Methods, 2011, 7, 26.	4.3	23
78	Plant Mitochondrial Carriers: Molecular Gatekeepers That Help to Regulate Plant Central Carbon Metabolism. Plants, 2020, 9, 117.	3.5	23
79	Three UDP-xylose transporters participate in xylan biosynthesis by conveying cytosolic UDP-xylose into the Golgi lumen in Arabidopsis. Journal of Experimental Botany, 2018, 69, 1125-1134.	4.8	22
80	Regulation of carbon metabolism in two maize sister lines contrasted for chilling tolerance. Journal of Experimental Botany, 2020, 71, 356-369.	4.8	22
81	1001 Proteomes: a functional proteomics portal for the analysis of <i>Arabidopsis thaliana</i> accessions. Bioinformatics, 2012, 28, 1303-1306.	4.1	21
82	Proteomic dissection of the Arabidopsis Golgi and trans-Golgi network. Frontiers in Plant Science, 2012, 3, 298.	3.6	21
83	Xylose donor transport is critical for fungal virulence. PLoS Pathogens, 2018, 14, e1006765.	4.7	21
84	Influence of light and nitrogen on the photosynthetic efficiency in the C4 plant MiscanthusÂA—Âgiganteus. Photosynthesis Research, 2017, 131, 1-13.	2.9	20
85	Separation of the Plant Golgi Apparatus and Endoplasmic Reticulum by Free-Flow Electrophoresis. Methods in Molecular Biology, 2014, 1072, 527-539.	0.9	19
86	Biochemical characterization of <i>Arabidopsis</i> APYRASE family reveals their roles in regulating endomembrane NDP/NMP homoeostasis. Biochemical Journal, 2015, 472, 43-54.	3.7	18
87	Beyond the Western front: targeted proteomics and organelle abundance profiling. Frontiers in Plant Science, 2015, 6, 301.	3.6	18
88	UDP-Glucuronic Acid Transport Is Required for Virulence of <i>Cryptococcus neoformans</i> . MBio, 2018, 9, .	4.1	15
89	The plant mitochondrial proteome and the challenge of defining the posttranslational modifications responsible for signalling and stress effects on respiratory functions. Physiologia Plantarum, 2007, 129, 207-224.	5.2	14
90	MASCP gator: an overview of the Arabidopsis proteomic aggregation portal. Frontiers in Plant Science, 2013, 4, 411.	3.6	14

#	Article	IF	CITATIONS
91	What makes a mitochondrion?. Genome Biology, 2003, 4, 218.	9.6	13
92	UDPâ€Api/UDPâ€Xyl synthases affect plant development by controlling the content of UDPâ€Api to regulate the RGâ€llâ€borate complex. Plant Journal, 2020, 104, 252-267.	5.7	12
93	Golgi Enrichment and Proteomic Analysis of Developing Pinus radiata Xylem by Free-Flow Electrophoresis. PLoS ONE, 2013, 8, e84669.	2.5	11
94	The Arabidopsis cytosolic proteome: the metabolic heart of the cell. Frontiers in Plant Science, 2014, 5, 21.	3.6	11
95	Boosting the Globalization of Plant Proteomics through INPPO: Current Developments and Future Prospects. Proteomics, 2012, 12, 359-368.	2.2	10
96	<i>BRITTLE PLANT1</i> is required for normal cell wall composition and mechanical strength in rice. Journal of Integrative Plant Biology, 2021, 63, 865-877.	8.5	10
97	Isolation of the Plant Cytosolic Fraction for Proteomic Analysis. Methods in Molecular Biology, 2014, 1072, 453-467.	0.9	10
98	The HUPO initiative on Model Organism Proteomes, iMOP. Proteomics, 2012, 12, 340-345.	2.2	9
99	A hypomorphic allele of SLC35D1 results in Schneckenbecken-like dysplasia. Human Molecular Genetics, 2019, 28, 3543-3551.	2.9	9
100	We Are Not Alone: The iMOP Initiative and Its Roles in a Biology- and Disease-Driven Human Proteome Project. Journal of Proteome Research, 2017, 16, 4273-4280.	3.7	8
101	A Pipeline towards the Biochemical Characterization of the Arabidopsis GT14 Family. International Journal of Molecular Sciences, 2021, 22, 1360.	4.1	7
102	Arabidopsis Mitochondrial Proteomics. Methods in Molecular Biology, 2007, 372, 559-571.	0.9	7
103	Proteome profile of the endomembrane of developing coleoptiles from switchgrass (<i>Panicum) Tj ETQq1 1 0.78</i>	34314 rgB 2.2	T /Overlock
104	The Role of Proteomics in the Development of Cellulosic Biofuels. Current Proteomics, 2010, 7, 121-134.	0.3	5
105	Profiling Cell Wall Monosaccharides and Nucleotide‧ugars from Plants. Current Protocols in Plant Biology, 2019, 4, e20092.	2.8	5
106	Proteome coverage of the model plant Arabidopsis thaliana: Implications for shotgun proteomic studies. Journal of Proteomics, 2013, 79, 195-199.	2.4	4
107	GDP-L-fucose transport in plants: The missing piece. Channels, 2017, 11, 8-10.	2.8	4
108	Organellar Proteomic Profiling to Analyze Membrane Trafficking Pathways. Trends in Plant Science, 2021, 26, 299-300.	8.8	4

#	Article	IF	CITATIONS
109	Untangling multi-gene families in plants by integrating proteomics into functional genomics. Phytochemistry, 2004, 65, 1517-1517.	2.9	3
110	Enrichment of Golgi Membranes from Triticum aestivum (Wheat) Seedlings. Methods in Molecular Biology, 2017, 1511, 131-150.	0.9	3
111	Enrichment of N-Linked Glycopeptides and Their Identification by Complementary Fragmentation Techniques. Methods in Molecular Biology, 2020, 2139, 225-240.	0.9	3
112	Plant Proteomics: Challenges and Resources. , 0, , 1-31.		2
113	Managing the green proteomes for the next decade of plant research. Frontiers in Plant Science, 2013, 4, 501.	3.6	2
114	Multi-Organism Proteomes (iMOP): Advancing our Understanding of Human Biology. Proteomics, 2015, 15, 2885-2894.	2.2	2
115	Editorial: International Plant Proteomics Organization (INPPO) World Congress 2014. Frontiers in Plant Science, 2016, 7, 1190.	3.6	2
116	Differential distributions of trafficking and signaling proteins of the maize ER-Golgi apparatus. Plant Signaling and Behavior, 2019, 14, 1672513.	2.4	2
117	Proteomic Characterization of Golgi Membranes Enriched from Arabidopsis Suspension Cell Cultures. Methods in Molecular Biology, 2016, 1496, 91-109.	0.9	1
118	Untangling Multi-gene Families in Plants by Integrating Proteomics into Functional Genomics. ChemInform, 2004, 35, no.	0.0	0
119	Dependence of Plant Cell Wall Composition and Structure on Cellulose Synthase-Like Knock Out Mutant. Biophysical Journal, 2012, 102, 590a-591a.	0.5	0
120	Enrichment of the Plant Cytosolic Fraction. Methods in Molecular Biology, 2017, 1511, 213-232.	0.9	0
121	Absolute Quantitation of In Vitro Expressed Plant Membrane Proteins by Targeted Proteomics (MRM) for the Determination of Kinetic Parameters. Methods in Molecular Biology, 2018, 1696, 217-234.	0.9	0