Michael S Landy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3391301/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Causal inference and the evolution of opposite neurons. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	4
2	Exposure to congruent or incongruent audiovisual stimuli modulates observers' prior about a common cause for vision and audition. Journal of Vision, 2021, 21, 2761.	0.3	0
3	Causal inference regulates audiovisual spatial recalibration via its influence on audiovisual perception. PLoS Computational Biology, 2021, 17, e1008877.	3.2	13
4	Contingent adaptation in masking and surround suppression. Vision Research, 2020, 166, 72-80.	1.4	8
5	Performance monitoring for sensorimotor confidence: A visuomotor tracking study. Cognition, 2020, 205, 104396.	2.2	24
6	Priors and payoffs in confidence judgments. Attention, Perception, and Psychophysics, 2020, 82, 3158-3175.	1.3	18
7	Modality-specific attention attenuates visual-tactile integration and recalibration effects by reducing prior expectations of a common source for vision and touch. Cognition, 2020, 197, 104170.	2.2	47
8	Audiovisual Recalibration and Stimulus Reliability. Journal of Vision, 2020, 20, 1418.	0.3	2
9	Human online adaptation to changes in prior probability. PLoS Computational Biology, 2019, 15, e1006681.	3.2	27
10	Face perception: A brief journey through recent discoveries and current directions. Vision Research, 2019, 157, 1-9.	1.4	25
11	Introduction to the special issue on face perception: Experience, models, and neural mechanisms. Vision Research, 2019, 157, 10-11.	1.4	Ο
12	Did I do that? Detecting a perturbation to visual feedback in a reaching task. Journal of Vision, 2019, 19, 5.	0.3	9
13	Naturally glossy: Gloss perception, illumination statistics, and tone mapping. Journal of Vision, 2018, 18, 4.	0.3	20
14	Temporal Contingencies Determine Whether Adaptation Strengthens or Weakens Normalization. Journal of Neuroscience, 2018, 38, 10129-10142.	3.6	16
15	A spatial frequency spectral peakedness model predicts discrimination performance of regularity in dot patterns. Vision Research, 2018, 149, 102-114.	1.4	3
16	Assessing the role of rewards and priors on confidence judgments. Journal of Vision, 2018, 18, 1046.	0.3	0
17	Feeling a flash. Journal of Vision, 2018, 18, 96.	0.3	0
18	Estimates of category means are biased away from the category boundary following an orientation-categorization task. Journal of Vision, 2018, 18, 751.	0.3	0

#	Article	IF	CITATIONS
19	Contingent adaptation in masking and surround suppression. Journal of Vision, 2018, 18, 259.	0.3	1
20	Sequential Effects in Confidence. Journal of Vision, 2018, 18, 658.	0.3	0
21	Optimal integration of heading specified by optic flow and target egocentric direction. Journal of Vision, 2018, 18, 1044.	0.3	0
22	Disrupted Saccade Control in Chronic Cerebral Injury: Upper Motor Neuron-Like Disinhibition in the Ocular Motor System. Frontiers in Neurology, 2017, 8, 12.	2.4	16
23	The Intersection between Ocular and Manual Motor Control: Eye–Hand Coordination in Acquired Brain Injury. Frontiers in Neurology, 2017, 8, 227.	2.4	25
24	Eye Control Deficits Coupled to Hand Control Deficits: Eye–Hand Incoordination in Chronic Cerebral Injury. Frontiers in Neurology, 2017, 8, 330.	2.4	12
25	Temporal causal inference with stochastic audiovisual sequences. PLoS ONE, 2017, 12, e0183776.	2.5	18
26	Suboptimal Criterion Learning in Static and Dynamic Environments. PLoS Computational Biology, 2017, 13, e1005304.	3.2	30
27	Estimation of gloss and shape from vision and touch Journal of Vision, 2017, 17, 359.	0.3	0
28	Estimation of gloss and shape from vision and touch. Journal of Vision, 2017, 17, 20.	0.3	1
29	Sinusoidal error perturbation reveals multiple coordinate systems for sensorymotor adaptation. Vision Research, 2016, 119, 82-98.	1.4	9
30	Pattern Adaptation and Normalization Reweighting. Journal of Neuroscience, 2016, 36, 9805-9816.	3.6	37
31	A Two-Stage Process Model of Sensory Discrimination: An Alternative to Drift-Diffusion. Journal of Neuroscience, 2016, 36, 11259-11274.	3.6	35
32	Motor planning poststroke: impairment in vector-coded reach plans. Physiological Reports, 2015, 3, e12650.	1.7	10
33	Near-optimal integration of orientation information across saccades. Journal of Vision, 2015, 15, 8.	0.3	68
34	Computational models of visual attention. Vision Research, 2015, 116, 93-94.	1.4	10
35	Suboptimal decision criteria are predicted by subjectively weighted probabilities and rewards. Attention, Perception, and Psychophysics, 2015, 77, 638-658.	1.3	27
36	Vision research special issue: Sight restoration: Prosthetics, optogenetics and gene therapy. Vision Research, 2015, 111, 115-123.	1.4	18

#	Article	IF	CITATIONS
37	Integration Trumps Selection in Object Recognition. Current Biology, 2015, 25, 920-927.	3.9	12
38	The efficiency of vision and action. Vision Research, 2015, 113, 113-115.	1.4	0
39	Statistical templates for visual search. Journal of Vision, 2014, 14, 18-18.	0.3	9
40	Pooling of first-order inputs in second-order vision. Vision Research, 2013, 91, 108-117.	1.4	9
41	Inconsistent channel bandwidth estimates suggest winner-take-all nonlinearity in second-order vision. Vision Research, 2013, 81, 58-68.	1.4	8
42	Choice of saccade endpoint under risk. Journal of Vision, 2013, 13, 27-27.	0.3	22
43	Adaptation to sensory-motor reflex perturbations is blind to the source of errors. Journal of Vision, 2012, 12, 4-4.	0.3	22
44	Dynamic Estimation of Task-Relevant Variance in Movement under Risk. Journal of Neuroscience, 2012, 32, 12702-12711.	3.6	32
45	Motor learning reveals the existence of multiple codes for movement planning. Journal of Neurophysiology, 2012, 108, 2708-2716.	1.8	22
46	Motor control is decision-making. Current Opinion in Neurobiology, 2012, 22, 996-1003.	4.2	333
47	Measuring adaptation with a sinusoidal perturbation function. Journal of Neuroscience Methods, 2012, 208, 48-58.	2.5	12
48	Combination of texture and color cues in visual segmentation. Vision Research, 2012, 58, 59-67.	1.4	39
49	Responses to second-order texture modulations undergo surround suppression. Vision Research, 2012, 62, 192-200.	1.4	12
50	Differential effects of exogenous and endogenous attention on second-order texture contrast sensitivity. Journal of Vision, 2012, 12, .	0.3	27
51	Cardinal rules: visual orientation perception reflects knowledge of environmental statistics. Nature Neuroscience, 2011, 14, 926-932.	14.8	495
52	Exogenous attention enhances 2nd-order contrast sensitivity. Vision Research, 2011, 51, 1086-1098.	1.4	43
53	Human primary visual cortex (V1) is selective for second-order spatial frequency. Journal of Neurophysiology, 2011, 105, 2121-2131.	1.8	31
54	Ideal-Observer Models of Cue Integration. , 2011, , 5-29.		90

54 Ideal-Observer Models of Cue Integration. , 2011, , 5-29.

#	Article	IF	CITATIONS
55	Cues and Pseudocues in Texture and Shape Perception. , 2011, , 263-278.		1
56	Data rules; but theory understands. Vision Research, 2010, 50, 2189.	1.4	0
57	lt's that time again. Nature Neuroscience, 2010, 13, 914-916.	14.8	18
58	Compensation for Changing Motor Uncertainty. PLoS Computational Biology, 2010, 6, e1000982.	3.2	22
59	Orientation Selectivity of Motion-Boundary Responses in Human Visual Cortex. Journal of Neurophysiology, 2010, 104, 2940-2950.	1.8	34
60	The Role of Visuohaptic Experience in Visually Perceived Depth. Journal of Neurophysiology, 2009, 101, 2789-2801.	1.8	21
61	Scale dependence and channel switching in letter identification. Journal of Vision, 2009, 9, 4-4.	0.3	23
62	The Expected Utility of Movement. , 2009, , 95-111.		6
63	Decision making, movement planning and statistical decision theory. Trends in Cognitive Sciences, 2008, 12, 291-297.	7.8	247
64	Conjoint Measurement of Gloss and Surface Texture. Psychological Science, 2008, 19, 196-204.	3.3	188
65	Optimal Compensation for Temporal Uncertainty in Movement Planning. PLoS Computational Biology, 2008, 4, e1000130.	3.2	71
66	Orientation-Selective Adaptation to Illusory Contours in Human Visual Cortex. Journal of Neuroscience, 2007, 27, 2186-2195.	3.6	85
67	Movement Planning With Probabilistic Target Information. Journal of Neurophysiology, 2007, 98, 3034-3046.	1.8	80
68	The effect of viewpoint on perceived visual roughness. Journal of Vision, 2007, 7, 1.	0.3	169
69	Visual estimation under risk. Journal of Vision, 2007, 7, 4.	0.3	29
70	A gloss on surface properties. Nature, 2007, 447, 158-159.	27.8	40
71	Questions without Words. , 2007, , 297-313.		26
72	Combining Priors and Noisy Visual Cues in a Rapid Pointing Task. Journal of Neuroscience, 2006, 26, 10154-10163.	3.6	169

#	Article	IF	CITATIONS
73	Limits to human movement planning in tasks with asymmetric gain landscapes. Journal of Vision, 2006, 6, 5.	0.3	48
74	Orientation-Selective Adaptation to First- and Second-Order Patterns in Human Visual Cortex. Journal of Neurophysiology, 2006, 95, 862-881.	1.8	216
75	Limits to human movement planning with delayed and unpredictable onset of needed information. Experimental Brain Research, 2006, 175, 276-284.	1.5	12
76	Noise masking reveals channels for second-order letters. Vision Research, 2006, 46, 1493-1506.	1.4	14
77	How direction of illumination affects visually perceived surface roughness. Journal of Vision, 2006, 6, 8.	0.3	84
78	Humans Rapidly Estimate Expected Gain in Movement Planning. Psychological Science, 2006, 17, 981-988.	3.3	84
79	Optimal Compensation for Changes in Task-Relevant Movement Variability. Journal of Neuroscience, 2005, 25, 7169-7178.	3.6	156
80	Slant from texture and disparity cues: Optimal cue combination. Journal of Vision, 2004, 4, 1.	0.3	361
81	Why Is Spatial Stereoresolution So Low?. Journal of Neuroscience, 2004, 24, 2077-2089.	3.6	147
82	Interpolating sampled contours in 3D: perturbation analyses. Vision Research, 2004, 44, 815-832.	1.4	11
83	A visual mechanism tuned to black. Vision Research, 2004, 44, 3223-3232.	1.4	70
84	Statistical decision theory and the selection of rapid, goal-directed movements. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2003, 20, 1419.	1.5	226
85	Weighted linear cue combination with possibly correlated error. Vision Research, 2003, 43, 2451-2468.	1.4	201
86	The consistency of bisection judgments in visual grasp space. Journal of Vision, 2003, 3, 13.	0.3	7
87	Statistical decision theory and trade-offs in the control of motor response. Spatial Vision, 2003, 16, 255-275.	1.4	190
88	Combining Sensory Information: Mandatory Fusion Within, but Not Between, Senses. Science, 2002, 298, 1627-1630.	12.6	418
89	Properties of second-order spatial frequency channels. Vision Research, 2002, 42, 2311-2329.	1.4	73
90	Interpolating sampled contours in 3-D: analyses of variability and bias. Vision Research, 2002, 42, 2431-2446.	1.4	20

#	Article	IF	CITATIONS
91	Ideal cue combination for localizing texture-defined edges. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2001, 18, 2307.	1.5	126
92	Interaction of visual prior constraints. Vision Research, 2001, 41, 2653-2668.	1.4	89
93	How vertical disparities assist judgements of distance. Vision Research, 2001, 41, 3455-3465.	1.4	23
94	Motion-Disparity Interaction and the Scaling of Stereoscopic Disparity. , 2001, , 129-150.		8
95	剿²¢ã®çŸ¥è¦š. Nature Digest, 2000, 4, 24-25.	0.0	0
96	Long range interactions between oriented texture elements. Vision Research, 1999, 39, 933-945.	1.4	26
97	Interaction between the perceived shape of two objects. Vision Research, 1999, 39, 3834-3848.	1.4	64
98	Examining edge- and region-based texture analysis mechanisms. Vision Research, 1998, 38, 439-446.	1.4	67
99	Observer biases in the 3D interpretation of line drawings. Vision Research, 1998, 38, 2817-2832.	1.4	168
100	<title>Influence function for visual interpolation</title> ., 1997, , .		11
101	Measurement and modeling of depth cue combination: in defense of weak fusion. Vision Research, 1995, 35, 389-412.	1.4	865
102	Discrimination of orientation-defined texture edges. Vision Research, 1995, 35, 2863-2877.	1.4	81
103	Histogram contrast analysis and the visual segregation of IID textures. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1994, 11, 2350.	1.5	82
104	Integration of stereopsis and motion shape cues. Vision Research, 1994, 34, 2259-2275.	1.4	161
105	Role of chromatic and luminance contrast in inferring structure from motion. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1993, 10, 1363.	1.5	15
106	A perturbation analysis of depth perception from combinations of texture and motion cues. Vision Research, 1993, 33, 2685-2696.	1.4	202
107	<title>HIPS-2 software for image processing: goals and directions</title> . , 1993, 1964, 382.		3
108	Texture segregation and orientation gradient. Vision Research, 1991, 31, 679-691.	1.4	284

7

#	Article	IF	CITATIONS
109	The kinetic depth effect and optic flowÈ I I. First- and second-order motion. Vision Research, 1991, 31, 859-876.	1.4	51
110	Nonadditivity of masking by narrow-band noises. Vision Research, 1991, 31, 1053-1065.	1.4	21
111	Intelligent temporal subsampling of American Sign Language using event boundaries Journal of Experimental Psychology: Human Perception and Performance, 1990, 16, 282-294.	0.9	7
112	How to study the kinetic depth effect experimentally Journal of Experimental Psychology: Human Perception and Performance, 1990, 16, 445-450.	0.9	34
113	Applications of the eve software for visual modeling. Vision Research, 1990, 30, 329-338.	1.4	6
114	A Statistical Framework for Robust Fusion of Depth Information. Proceedings of SPIE, 1989, 1199, 1154.	0.8	72
115	All about EVE: The Early Vision Emulation software. Behavior Research Methods, 1989, 21, 491-501.	1.3	5
116	Kinetic depth effect and optic flow—I. 3D shape from Fourier motion. Vision Research, 1989, 29, 1789-1813.	1.4	89
117	Depth Interpolation with Sparse Disparity Cues. Perception, 1989, 18, 39-54.	1.2	24
118	Kinetic depth effect and identification of shape Journal of Experimental Psychology: Human Perception and Performance, 1989, 15, 826-840.	0.9	74
119	Ratings of kinetic depth in multidot displays Journal of Experimental Psychology: Human Perception and Performance, 1989, 15, 816-825.	0.9	23
120	Image-processing packages. Nature, 1988, 335, 19-19.	27.8	2
121	A statistical viewpoint on the theory of evidence. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1988, 10, 235-247.	13.9	40
122	Parallel model of the kinetic depth effect using local computations. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 1987, 4, 864.	1.5	15
123	The gap from sensation to cognition. Behavioral and Brain Sciences, 1986, 9, 101-102.	0.7	2
124	Intelligible Encoding of ASL Image Sequences at Extremely Low Information Rates. , 1986, , 256-312.		1
125	Intelligible encoding of ASL image sequences at extremely low information rates. Computer Vision, Graphics, and Image Processing, 1985, 31, 335-391.	1.0	50
126	Vectorgraph coding: Efficient coding of line drawings. Computer Vision, Graphics, and Image Processing, 1985, 30, 331-344.	1.0	21

#	Article	IF	CITATIONS
127	Hierarchical Coding of Binary Images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1985, PAMI-7, 284-298.	13.9	46
128	HIPS: A unix-based image processing system. Computer Vision, Graphics, and Image Processing, 1984, 25, 331-347.	1.0	82
129	HIPS: Image processing under UNIX. Software and applications. Behavior Research Methods, 1984, 16, 199-216.	1.3	46