Masahiko Negishi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390057/publications.pdf

Version: 2024-02-01

268 papers 19,371 citations

72 h-index 128 g-index

271 all docs

271 docs citations

times ranked

271

8131 citing authors

#	Article	IF	CITATIONS
1	Immunoprecipitation Analyses of Estrogen Receptor α Phosphorylated at Serine 216 in the Mouse Liver. Methods in Molecular Biology, 2022, 2418, 41-51.	0.9	1
2	Detection and Functional Analysis of Estrogen Receptor α Phosphorylated at Serine 216 in Mouse Neutrophils. Methods in Molecular Biology, 2022, 2418, 63-75.	0.9	1
3	Human constitutive androstane receptor represses liver cancer development and hepatoma cell proliferation by inhibiting erythropoietin signaling. Journal of Biological Chemistry, 2022, 298, 101885.	3.4	13
4	Mice blocking Ser347 phosphorylation of pregnane x receptor develop hepatic fasting-induced steatosis and hypertriglyceridemia. Biochemical and Biophysical Research Communications, 2022, 615, 75-80.	2.1	5
5	Estrogen Sulfotransferase (SULT1E1): Its Molecular Regulation, Polymorphisms, and Clinical Perspectives. Journal of Personalized Medicine, 2021, 11, 194.	2.5	18
6	Glucocorticoid receptor dimerization in the cytoplasm might be essential for nuclear localization. Biochemical and Biophysical Research Communications, 2021, 553, 154-159.	2.1	6
7	Sex-specific expression mechanism of hepatic estrogen inactivating enzyme and transporters in diabetic women. Biochemical Pharmacology, 2021, 190, 114662.	4.4	6
8	Androgen receptor phosphorylated at Ser815: The expression and function in the prostate and tumor-derived cells. Biochemical Pharmacology, 2021, 194, 114794.	4.4	6
9	PXR phosphorylated at Ser350 transduces a glucose signal to repress the estrogen sulfotransferase gene in human liver cells and fasting signal in mouse livers. Biochemical Pharmacology, 2020, 180, 114197.	4.4	10
10	Estrogen receptor $\hat{l}\pm$ phosphorylated at Ser216 confers inflammatory function to mouse microglia. Cell Communication and Signaling, 2020, 18, 117.	6.5	12
11	Nuclear receptor phosphorylation in xenobiotic signal transduction. Journal of Biological Chemistry, 2020, 295, 15210-15225.	3.4	38
12	Ser100-Phosphorylated RORÎ \pm Orchestrates CAR and HNF4Î \pm to Form Active Chromatin Complex in Response to Phenobarbital to Regulate Induction of CYP2B6. Molecular Pharmacology, 2020, 97, 191-201.	2.3	4
13	Nuclear receptor CAR-ERÎ \pm signaling regulates the estrogen sulfotransferase gene in the liver. Scientific Reports, 2020, 10, 5001.	3.3	12
14	RORα phosphorylation by casein kinase 1α as glucose signal to regulate estrogen sulfation in human liver cells. Biochemical Journal, 2020, 477, 3583-3598.	3.7	4
15	Phosphorylation of vaccinia-related kinase 1 at threonine 386 transduces glucose stress signal in human liver cells. Bioscience Reports, 2020 , 40 , .	2.4	6
16	SUN-LB134 Androgen Receptor Phosphorylated at Serine 815 in Mouse and Human Prostates. Journal of the Endocrine Society, 2020, 4, .	0.2	1
17	A phosphorylation-deficient mutant of retinoid X receptor \hat{l}_{\pm} at Thr 167 alters fasting response and energy metabolism in mice. Laboratory Investigation, 2019, 99, 1470-1483.	3.7	8
18	Ligand induced dissociation of the AR homodimer precedes AR monomer translocation to the nucleus. Scientific Reports, 2019, 9, 16734.	3.3	11

#	Article	IF	CITATIONS
19	Sulfotransferase 4A1 Increases Its Expression in Mouse Neurons as They Mature. Drug Metabolism and Disposition, 2018, 46, 860-864.	3.3	9
20	Co-Chaperone-Mediated Suppression of LPS-Induced Cardiac Toxicity Through NFκB Signaling. Shock, 2018, 50, 248-254.	2.1	5
21	Nuclear Receptor CAR Suppresses GADD45B-p38 MAPK Signaling to Promote Phenobarbital-induced Proliferation in Mouse Liver. Molecular Cancer Research, 2018, 16, 1309-1318.	3.4	12
22	Interaction of the phosphorylated DNA-binding domain in nuclear receptor CAR with its ligand-binding domain regulates CAR activation. Journal of Biological Chemistry, 2018, 293, 333-344.	3.4	20
23	GR Utilizes a Co-Chaperone Cytoplasmic CAR Retention Protein to Form an N/C Interaction. Nuclear Receptor Signaling, 2018, 15, 155076291880107.	1.0	2
24	Phenobarbitalâ€induced phosphorylation converts nuclear receptor <scp>ROR</scp> α from a repressor to an activator of the estrogen sulfotransferase gene <i>Sult1e1</i> in mouse livers. FEBS Letters, 2018, 592, 2760-2768.	2.8	12
25	Phosphorylated Nuclear Receptor CAR Forms a Homodimer To Repress Its Constitutive Activity for Ligand Activation. Molecular and Cellular Biology, 2017, 37, .	2.3	31
26	Role of CYP2B in Phenobarbital-Induced Hepatocyte Proliferation in Mice. Drug Metabolism and Disposition, 2017, 45, 977-981.	3.3	11
27	Phenobarbital Meets Phosphorylation of Nuclear Receptors. Drug Metabolism and Disposition, 2017, 45, 532-539.	3.3	32
28	Glucose elicits serine/threonine kinase VRK1 to phosphorylate nuclear pregnane X receptor as a novel hepatic gluconeogenic signal. Cellular Signalling, 2017, 40, 200-209.	3.6	19
29	p38 MAP Kinase Links CAR Activation and Inactivation in the Nucleus via Phosphorylation at Threonine 38. Drug Metabolism and Disposition, 2016, 44, 871-876.	3.3	14
30	Phosphorylation of Farnesoid X Receptor at Serine 154 Links Ligand Activation With Degradation. Molecular Endocrinology, 2016, 30, 1070-1080.	3.7	22
31	Phenobarbital and Insulin Reciprocate Activation of the Nuclear Receptor Constitutive Androstane Receptor through the Insulin Receptor. Journal of Pharmacology and Experimental Therapeutics, 2016, 357, 367-374.	2.5	18
32	Detection and Functional Analysis of Estrogen Receptor \hat{l}_{\pm} Phosphorylated at Serine 216 in Mouse Neutrophils. Methods in Molecular Biology, 2016, 1366, 413-424.	0.9	2
33	Statin-activated nuclear receptor PXR promotes SGK2 dephosphorylation by scaffolding PP2C to induce hepatic gluconeogenesis. Scientific Reports, 2015, 5, 14076.	3.3	51
34	SLC13A5 Is a Novel Transcriptional Target of the Pregnane X Receptor and Sensitizes Drug-Induced Steatosis in Human Liver. Molecular Pharmacology, 2015, 87, 674-682.	2.3	68
35	Regulation of gene expression by CAR: an update. Archives of Toxicology, 2015, 89, 1045-1055.	4.2	75
36	Pregnane X Receptor Represses <i>HNF4α</i> Gene to Induce Insulin-Like Growth Factor–Binding Protein IGFBP1 that Alters Morphology of and Migrates HepG2 Cells. Molecular Pharmacology, 2015, 88, 746-757.	2.3	22

#	Article	IF	Citations
37	Nuclear Receptor-Mediated Regulation of Cytochrome P450 Genes. , 2015, , 787-812.		6
38	The Roles of Co-Chaperone CCRP/DNAJC7 in Cyp2b10 Gene Activation and Steatosis Development in Mouse Livers. PLoS ONE, 2014, 9, e115663.	2.5	21
39	Serum- and Glucocorticoid-Regulated Kinase 2 Determines Drug-Activated Pregnane X Receptor to Induce Gluconeogenesis in Human Liver Cells. Journal of Pharmacology and Experimental Therapeutics, 2014, 348, 131-140.	2.5	26
40	Flame Retardant BDE-47 Effectively Activates Nuclear Receptor CAR in Human Primary Hepatocytes. Toxicological Sciences, 2014, 137, 292-302.	3.1	48
41	Epidermal Growth Factor Receptor: The Phenobarbital Receptor that Elicits CAR Activation Signal for P450 Induction. , 2014, , 247-257.		0
42	Coordinated Regulation of Nuclear Receptor CAR by CCRP/DNAJC7, HSP70 and the Ubiquitin-Proteasome System. PLoS ONE, 2014, 9, e96092.	2.5	36
43	Sexual dimorphisms in zonal gene expression in mouse liver. Biochemical and Biophysical Research Communications, 2013, 436, 730-735.	2.1	31
44	Phenobarbital Indirectly Activates the Constitutive Active Androstane Receptor (CAR) by Inhibition of Epidermal Growth Factor Receptor Signaling. Science Signaling, 2013, 6, ra31.	3.6	163
45	<i>Sulfotransferase</i> genes: Regulation by nuclear receptors in response to xeno/endo-biotics. Drug Metabolism Reviews, 2013, 45, 441-449.	3.6	41
46	PXR cross-talks with internal and external signals in physiological and pathophysiological responses. Drug Metabolism Reviews, 2013, 45, 300-310.	3.6	24
47	Nuclear Receptor CAR Specifically Activates the Two-Pore K+ Channel Kcnk1 Gene in Male Mouse Livers, Which Attenuates Phenobarbital-Induced Hepatic Hyperplasia. Toxicological Sciences, 2013, 132, 151-161.	3.1	12
48	p38 Mitogen–Activated Protein Kinase Regulates Nuclear Receptor CAR that Activates the <i>CYP2B6</i> Gene. Drug Metabolism and Disposition, 2013, 41, 1170-1173.	3.3	18
49	Serine 216 Phosphorylation of ÂEstrogen Receptor \hat{l}_{\pm} in Neutrophils: Migration and Infiltration into the Mouse Uterus. PLoS ONE, 2013, 8, e84462.	2.5	24
50	The Structural Basis for a Coordinated Reaction Catalyzed by a Bifunctional Glycosyltransferase in Chondroitin Biosynthesis. Journal of Biological Chemistry, 2012, 287, 36022-36028.	3.4	14
51	Pregnane X receptor regulates drug metabolism and transport in the vasculature and protects from oxidative stress. Cardiovascular Research, 2012, 93, 674-681.	3.8	48
52	Phosphorylation of serine 212 confers novel activity to human estrogen receptor α. Steroids, 2012, 77, 448-453.	1.8	16
53	The nuclear receptor constitutive active/androstane receptor arrests DNAâ€damaged human hepatocellular carcinoma Huh7 cells at the G2/M phase. Molecular Carcinogenesis, 2012, 51, 206-212.	2.7	5
54	Role of a novel CAR-induced gene, TUBA8, in hepatocellular carcinoma cell lines. Cancer Genetics, 2011, 204, 382-391.	0.4	10

#	Article	IF	CITATIONS
55	Pregnane X Receptor PXR Activates the GADD $45\hat{1}^2$ Gene, Eliciting the p38 MAPK Signal and Cell Migration. Journal of Biological Chemistry, 2011, 286, 3570-3578.	3.4	60
56	Garlic Extract Diallyl Sulfide (DAS) Activates Nuclear Receptor CAR to Induce the Sult1e1 Gene in Mouse Liver. PLoS ONE, 2011, 6, e21229.	2.5	36
57	Nuclear receptor CAR (NR113) is essential for DDC-induced liver injury and oval cell proliferation in mouse liver. Laboratory Investigation, 2011, 91, 1624-1633.	3.7	25
58	Active ERK1/2 Protein Interacts with the Phosphorylated Nuclear Constitutive Active/Androstane Receptor (CAR; NR1I3), Repressing Dephosphorylation and Sequestering CAR in the Cytoplasm. Journal of Biological Chemistry, 2011, 286, 35763-35769.	3.4	50
59	Nuclear receptor CAR-regulated expression of the FAM84A gene during the development of mouse liver tumors. International Journal of Oncology, 2011, 38, 1511-20.	3.3	11
60	Liganded pregnane X receptor represses the human sulfotransferase SULT1E1 promoter through disrupting its chromatin structure. Nucleic Acids Research, 2011, 39, 8392-8403.	14.5	43
61	The K+ Channel KCNK1: CARâ€mediated Gene Regulation of Maleâ€specific Induction by PB and Hepatic Hypertrophy. FASEB Journal, 2011, 25, 1090.5.	0.5	0
62	Nuclear xenobiotic receptor PXR-null mouse exhibits hypophosphatemia and represses the Na/Pi-cotransporter SLC34A2. Pharmacogenetics and Genomics, 2010, 20, 9-17.	1.5	15
63	The Nuclear Receptors Constitutive Active/Androstane Receptor and Pregnane X Receptor Activate the Cyp2c55Gene in Mouse Liver. Drug Metabolism and Disposition, 2010, 38, 1177-1182.	3.3	14
64	Dietary Flavonoids Activate the Constitutive Androstane Receptor (CAR). Journal of Agricultural and Food Chemistry, 2010, 58, 2168-2173.	5.2	31
65	Nuclear Receptor CAR Represses TNFα-Induced Cell Death by Interacting with the Anti-Apoptotic GADD45B. PLoS ONE, 2010, 5, e10121.	2.5	50
66	Nuclear Xenobiotic Receptor Pregnane X Receptor Locks Corepressor Silencing Mediator for Retinoid and Thyroid Hormone Receptors (SMRT) onto the CYP24A1 Promoter to Attenuate Vitamin D3 Activation. Molecular Pharmacology, 2009, 75, 265-271.	2.3	30
67	Inter-α-trypsin Inhibitor Promotes Bronchial Epithelial Repair after Injury through Vitronectin Binding. Journal of Biological Chemistry, 2009, 284, 16922-16930.	3.4	34
68	Dephosphorylation of Threonine 38 Is Required for Nuclear Translocation and Activation of Human Xenobiotic Receptor CAR (NR113). Journal of Biological Chemistry, 2009, 284, 34785-34792.	3.4	117
69	Early growth response 1 loops the <i>CYP2B6</i> promoter for synergistic activation by the distal and proximal nuclear receptors CAR and HNF4α. FEBS Letters, 2009, 583, 2126-2130.	2.8	23
70	Expression of CAR in SW480 and HepG2 cells during G1 is associated with cell proliferation. Biochemical and Biophysical Research Communications, 2008, 369, 1027-1033.	2.1	19
71	Nuclear Receptor CAR Requires Early Growth Response 1 to Activate the Human Cytochrome P450 2B6 Gene. Journal of Biological Chemistry, 2008, 283, 10425-10432.	3.4	35
72	PPP1R16A, The Membrane Subunit of Protein Phosphatase $1\hat{l}^2$, Signals Nuclear Translocation of the Nuclear Receptor Constitutive Active/Androstane Receptor. Molecular Pharmacology, 2008, 73, 1113-1121.	2.3	41

#	Article	IF	CITATIONS
73	Identification of <i>Ginkgo biloba</i> as a Novel Activator of Pregnane X Receptor. Drug Metabolism and Disposition, 2008, 36, 2270-2276.	3.3	59
74	2-O-Phosphorylation of Xylose and 6-O-Sulfation of Galactose in the Protein Linkage Region of Glycosaminoglycans Influence the Glucuronyltransferase-I Activity Involved in the Linkage Region Synthesis. Journal of Biological Chemistry, 2008, 283, 16801-16807.	3.4	68
75	The Roles of Nuclear Receptors CAR and PXR in Hepatic Energy Metabolism. Drug Metabolism and Pharmacokinetics, 2008, 23, 8-13.	2.2	122
76	The Antiapoptotic Factor Growth Arrest and DNA-Damage-Inducible 45 \hat{l}^2 Regulates the Nuclear Receptor Constitutive Active/Androstane Receptor-Mediated Transcription. Drug Metabolism and Disposition, 2008, 36, 1189-1193.	3.3	25
77	The Peripheral Benzodiazepine Receptor Ligand 1-(2-Chlorophenyl-methylpropyl)-3-isoquinoline-carboxamide Is a Novel Antagonist of Human Constitutive Androstane Receptor. Molecular Pharmacology, 2008, 74, 443-453.	2.3	92
78	The Chondroitin Polymerase K4CP and the Molecular Mechanism of Selective Bindings of Donor Substrates to Two Active Sites. Journal of Biological Chemistry, 2008, 283, 32328-32333.	3.4	24
79	New Insights on the Xenobiotic-Sensing Nuclear Receptors in Liver Diseases – CAR and PXR Current Drug Metabolism, 2008, 9, 614-621.	1.2	81
80	The role of the nuclear receptor constitutive androstane receptor in the pathogenesis of non-alcoholic steatohepatitis. Gut, 2007, 56, 565-574.	12.1	74
81	Orphan Nuclear Receptor Constitutive Active/Androstane Receptor–Mediated Alterations in DNA Methylation during Phenobarbital Promotion of Liver Tumorigenesis. Toxicological Sciences, 2007, 96, 72-82.	3.1	48
82	Extracellular Signal-Regulated Kinase Is an Endogenous Signal Retaining the Nuclear Constitutive Active/Androstane Receptor (CAR) in the Cytoplasm of Mouse Primary Hepatocytes. Molecular Pharmacology, 2007, 71, 1217-1221.	2.3	71
83	Nuclear Pregnane X Receptor Cross-talk with FoxA2 to Mediate Drug-induced Regulation of Lipid Metabolism in Fasting Mouse Liver. Journal of Biological Chemistry, 2007, 282, 9768-9776.	3.4	156
84	Relative Activation of Human Pregnane X Receptor versus Constitutive Androstane Receptor Defines Distinct Classes of CYP2B6 and CYP3A4 Inducers. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 72-80.	2.5	281
85	The Nuclear Receptor Constitutively Active/Androstane Receptor Regulates Type 1 Deiodinase and Thyroid Hormone Activity in the Regenerating Mouse Liver. Journal of Pharmacology and Experimental Therapeutics, 2007, 320, 307-313.	2.5	37
86	Human nuclear pregnane X receptor cross-talk with CREB to repress cAMP activation of the glucose-6-phosphatase gene. Biochemical Journal, 2007, 407, 373-381.	3.7	103
87	CAR and PXR: The xenobiotic-sensing receptorsâ [†] t. Steroids, 2007, 72, 231-246.	1.8	394
88	Overexpression of the Rhoâ€guanine nucleotide exchange factor ECT2 inhibits nuclear translocation of nuclear receptor CAR in the mouse liver. FEBS Letters, 2007, 581, 4937-4942.	2.8	8
89	Phenobarbital Confers its Diverse Effects by Activating the Orphan Nuclear Receptor Car. Drug Metabolism Reviews, 2006, 38, 75-87.	3.6	70
90	Nuclear receptors CAR and PXR in the regulation of hepatic metabolism. Xenobiotica, 2006, 36, 1152-1163.	1.1	84

#	Article	IF	Citations
91	Cohesin protein SMC1 represses the nuclear receptor CAR-mediated synergistic activation of a human P450 gene by xenobiotics. Biochemical Journal, 2006, 398, 125-133.	3.7	17
92	Characterization of Specific Donor Binding to $\hat{l}\pm 1,4\hat{a}\in N\hat{a}\in A$ cetylhexosaminyltransferase EXTL2 Using Isothermal Titration Calorimetry. Methods in Enzymology, 2006, 416, 3-12.	1.0	5
93	INDUCTION OF GENES FOR METABOLISM AND TRANSPORT BY TRANS-STILBENE OXIDE IN LIVERS OF SPRAGUE-DAWLEY AND WISTAR-KYOTO RATS. Drug Metabolism and Disposition, 2006, 34, 1190-1197.	3.3	16
94	Phenytoin Induction of the Cyp2c37 Gene Is Mediated by the Constitutive Androstane Receptor. Drug Metabolism and Disposition, 2006, 34, 2003-2010.	3.3	44
95	Serine 202 Regulates the Nuclear Translocation of Constitutive Active/Androstane Receptor. Molecular Pharmacology, 2006, 69, 1095-1102.	2.3	63
96	Differential Regulation of Hepatic CYP2B6 and CYP3A4 Genes by Constitutive Androstane Receptor but Not Pregnane X Receptor. Journal of Pharmacology and Experimental Therapeutics, 2006, 317, 1200-1209.	2.5	171
97	Estrogen Receptor α Mediates 17α-Ethynylestradiol Causing Hepatotoxicity*. Journal of Biological Chemistry, 2006, 281, 16625-16631.	3.4	140
98	Thr176 regulates the activity of the mouse nuclear receptor CAR and is conserved in the NR1I subfamily members PXR and VDR. Biochemical Journal, 2005, 388, 623-630.	3.7	15
99	Structural Gene Products of the Murine Ah Complex. FEBS Journal, 2005, 115, 585-594.	0.2	47
100	The Nuclear Receptors Constitutive Androstane Receptor and Pregnane X Receptor Cross-Talk with Hepatic Nuclear Factor $4\hat{l}\pm$ to Synergistically Activate the Human CYP2C9 Promoter. Journal of Pharmacology and Experimental Therapeutics, 2005, 314, 1125-1133.	2.5	104
101	IDENTIFICATION OF HMG-CoA REDUCTASE INHIBITORS AS ACTIVATORS FOR HUMAN, MOUSE AND RAT CONSTITUTIVE ANDROSTANE RECEPTOR. Drug Metabolism and Disposition, 2005, 33, 924-929.	3.3	68
102	Human CYP2C8 Is Transcriptionally Regulated by the Nuclear Receptors Constitutive Androstane Receptor, Pregnane X Receptor, Glucocorticoid Receptor, and Hepatic Nuclear Factor 4α. Molecular Pharmacology, 2005, 68, 747-757.	2.3	185
103	Two-step Mechanism That Determines the Donor Binding Specificity of Human UDP-N-acetylhexosaminyltransferase. Journal of Biological Chemistry, 2005, 280, 23441-23445.	3.4	11
104	Transcriptional Regulation of Human UGT1A1 Gene Expression: Activated Glucocorticoid Receptor Enhances constitutive Androstane Receptor/Pregnane X Receptor-Mediated UDP-Glucuronosyltransferase 1A1 Regulation with Glucocorticoid Receptor-Interacting Protein 1. Molecular Pharmacology, 2005, 67, 845-855.	2.3	134
105	Novel CAR-mediated Mechanism for Synergistic Activation of Two Distinct Elements within the Human Cytochrome P450 2B6 Gene in HepG2 Cells. Journal of Biological Chemistry, 2005, 280, 3458-3466.	3.4	51
106	Regulation of the Human UGT1A1 Gene by Nuclear Receptors Constitutive Active/Androstane Receptor, Pregnane X Receptor, and Glucocorticoid Receptor. Methods in Enzymology, 2005, 400, 92-104.	1.0	50
107	Differential UGT1A1 Induction by Chrysin in Primary Human Hepatocytes and HepG2 Cells. Journal of Pharmacology and Experimental Therapeutics, 2005, 315, 1256-1264.	2.5	41
108	Localization of the nuclear receptor CAR at the cell membrane of mouse liver. FEBS Letters, 2005, 579, 6733-6736.	2.8	21

#	Article	lF	Citations
109	Human SULT1A Genes: Cloning and Activity Assays of the SULT1A Promoters. Methods in Enzymology, 2005, 400, 147-165.	1.0	18
110	Role of nuclear receptor CAR in carbon tetrachloride-induced hepatotoxicity. World Journal of Gastroenterology, 2005, 11, 5966.	3.3	19
111	CAR, Driving into the Future. Molecular Endocrinology, 2004, 18, 1589-1598.	3.7	137
112	The Constitutive Active/Androstane Receptor Regulates Phenytoin Induction of Cyp2c29. Molecular Pharmacology, 2004, 65, 1397-1404.	2.3	50
113	Induction of Human CYP2C9 by Rifampicin, Hyperforin, and Phenobarbital Is Mediated by the Pregnane X Receptor. Journal of Pharmacology and Experimental Therapeutics, 2004, 308, 495-501.	2.5	206
114	Nuclear Receptors CAR and PXR Cross Talk with FOXO1 To Regulate Genes That Encode Drug-Metabolizing and Gluconeogenic Enzymes. Molecular and Cellular Biology, 2004, 24, 7931-7940.	2.3	295
115	The Human Sulfotransferase SULT1A1 Gene Is Regulated in a Synergistic Manner by Sp1 and GA Binding Protein. Molecular Pharmacology, 2004, 66, 1690-1701.	2.3	48
116	Cytoplasmic Localization of Pregnane X Receptor and Ligand-dependent Nuclear Translocation in Mouse Liver. Journal of Biological Chemistry, 2004, 279, 49307-49314.	3.4	163
117	Structural Analysis of the Sulfotransferase (3-O-Sulfotransferase Isoform 3) Involved in the Biosynthesis of an Entry Receptor for Herpes Simplex Virus 1. Journal of Biological Chemistry, 2004, 279, 45185-45193.	3.4	77
118	Human Constitutive Androstane Receptor Mediates Induction of CYP2B6 Gene Expression by Phenytoin. Journal of Biological Chemistry, 2004, 279, 29295-29301.	3.4	136
119	Crystal Structure and Mutational Analysis of Heparan Sulfate 3-O-Sulfotransferase Isoform 1. Journal of Biological Chemistry, 2004, 279, 25789-25797.	3.4	64
120	The Orphan Nuclear Receptor Constitutive Active/Androstane Receptor Is Essential for Liver Tumor Promotion by Phenobarbital in Mice. Cancer Research, 2004, 64, 7197-7200.	0.9	324
121	REGULATION OF CYP2B6 IN PRIMARY HUMAN HEPATOCYTES BY PROTOTYPICAL INDUCERS. Drug Metabolism and Disposition, 2004, 32, 348-358.	3.3	177
122	PACAP activates Rac1 and synergizes with NGF to activate ERK1/2, thereby inducing neurite outgrowth in PC12 cells. Molecular Brain Research, 2004, 123, 18-26.	2.3	28
123	Regulation of Cyp2a5 transcription in mouse primary hepatocytes: roles of hepatocyte nuclear factor 4 and nuclear factor I. Biochemical Journal, 2004, 381, 887-894.	3.7	20
124	Drug-activated nuclear receptors CAR and PXR. Annals of Medicine, 2003, 35, 172-182.	3.8	161
125	Identification of the nuclear receptor CAR:HSP90 complex in mouse liver and recruitment of protein phosphatase 2A in response to phenobarbital. FEBS Letters, 2003, 548, 17-20.	2.8	147
126	The role of the nuclear receptor CAR as a coordinate regulator of hepatic gene expression in defense against chemical toxicity. Archives of Biochemistry and Biophysics, 2003, 409, 207-211.	3.0	64

#	Article	IF	CITATIONS
127	Glucosaminylglycan biosynthesis: what we can learn from the X-ray crystal structures of glycosyltransferases GlcAT1 and EXTL2. Biochemical and Biophysical Research Communications, 2003, 303, 393-398.	2.1	56
128	Explicit Water Near the Catalytic I Helix Thr in the Predicted Solution Structure of CYP2A4. Biophysical Journal, 2003, 84, 57-68.	0.5	14
129	Phenobarbital induction of drug/steroid-metabolizing enzymes and nuclear receptor CAR. Biochimica Et Biophysica Acta - General Subjects, 2003, 1619, 239-242.	2.4	60
130	Crystal Structure of Human Cholesterol Sulfotransferase (SULT2B1b) in the Presence of Pregnenolone and 3′-Phosphoadenosine 5′-Phosphate. Journal of Biological Chemistry, 2003, 278, 44593-44599.	3.4	70
131	Complementary Roles of Farnesoid X Receptor, Pregnane X Receptor, and Constitutive Androstane Receptor in Protection against Bile Acid Toxicity. Journal of Biological Chemistry, 2003, 278, 45062-45071.	3.4	272
132	Structural analysis by X-ray crystallography and calorimetry of a haemagglutinin component (HA1) of the progenitor toxin from Clostridium botulinum. Microbiology (United Kingdom), 2003, 149, 3361-3370.	1.8	69
133	Identification of Constitutive Androstane Receptor and Glucocorticoid Receptor Binding Sites in the CYP2C19 Promoter. Molecular Pharmacology, 2003, 64, 316-324.	2.3	160
134	A Novel Distal Enhancer Module Regulated by Pregnane X Receptor/Constitutive Androstane Receptor Is Essential for the Maximal Induction of CYP2B6 Gene Expression. Journal of Biological Chemistry, 2003, 278, 14146-14152.	3.4	195
135	Cytoplasmic Accumulation of the Nuclear Receptor CAR by a Tetratricopeptide Repeat Protein in HepG2 Cells. Molecular Pharmacology, 2003, 64, 1069-1075.	2.3	173
136	The Environmental Pollutant 1,1-Dichloro-2,2-bis (p-chlorophenyl)ethylene Induces Rat Hepatic Cytochrome P450 2B and 3A Expression through the Constitutive Androstane Receptor and Pregnane X Receptor. Molecular Pharmacology, 2003, 64, 474-481.	2.3	100
137	Crystal Structure of an $\hat{l}\pm 1,4$ -N-Acetylhexosaminyltransferase (EXTL2), a Member of the Exostosin Gene Family Involved in Heparan Sulfate Biosynthesis. Journal of Biological Chemistry, 2003, 278, 14420-14428.	3.4	95
138	Glucocorticoid Receptor Enhancement of Pregnane X Receptor-Mediated CYP2B6 Regulation in Primary Human Hepatocytes. Drug Metabolism and Disposition, 2003, 31, 620-630.	3.3	89
139	Heparan sulphate N-sulphotransferase activity: reaction mechanism and substrate recognition. Biochemical Society Transactions, 2003, 31, 331-334.	3.4	17
140	Transcriptional Regulation of Cytochrome P450 2B Genes by Nuclear Receptors. Current Drug Metabolism, 2003, 4, 515-525.	1.2	116
141	Crystallographic analysis of a hydroxylated polychlorinated biphenyl (OH-PCB) bound to the catalytic estrogen binding site of human estrogen sulfotransferase Environmental Health Perspectives, 2003, 111, 884-888.	6.0	62
142	Retinoic Acids Repress Constitutive Active Receptor-Mediated Induction by 1,4-bis[2-(3,5-Dichloropyridyloxy)]benzene of the Cyp2b10 Gene in Mouse Primary Hepatocytes. Drug Metabolism and Disposition, 2002, 30, 208-211.	3.3	19
143	Regulation of HumanCYP2C9by the Constitutive Androstane Receptor: Discovery of a New Distal Binding Site. Molecular Pharmacology, 2002, 62, 737-746.	2.3	149
144	Diverse Roles of the Nuclear Orphan Receptor CAR in Regulating Hepatic Genes in Response to Phenobarbital. Molecular Pharmacology, 2002, 61, 1-6.	2.3	446

#	Article	IF	CITATIONS
145	Residue Threonine 350 Confers Steroid Hormone Responsiveness to the Mouse Nuclear Orphan Receptor CAR. Molecular Pharmacology, 2002, 61, 1284-1288.	2.3	23
146	Crystal Structure of $\hat{I}^21,3$ -Glucuronyltransferase I in Complex with Active Donor Substrate UDP-GlcUA. Journal of Biological Chemistry, 2002, 277, 21869-21873.	3.4	67
147	Role of Constitutive Androstane Receptor in the In Vivo Induction of Mrp3 and CYP2B1/2 by Phenobarbital. Drug Metabolism and Disposition, 2002, 30, 918-923.	3.3	97
148	Crystal Structure of the Human Estrogen Sulfotransferase-PAPS Complex. Journal of Biological Chemistry, 2002, 277, 17928-17932.	3.4	107
149	Direct expression of fluorescent protein-tagged nuclear receptor CAR in mouse liver. Methods in Enzymology, 2002, 357, 205-213.	1.0	15
150	Identification of a Defect in the UGT1A1 Gene Promoter and Its Association with Hyperbilirubinemia. Biochemical and Biophysical Research Communications, 2002, 292, 492-497.	2.1	201
151	Species-specific responses of constitutively active receptor (CAR)–CYP2B coupling: lack of CYP2B inducer-responsive nuclear translocation of CAR in marine teleost, scup (Stenotomus chrysops). Comparative Biochemistry and Physiology Part - C: Toxicology and Pharmacology, 2002, 131, 501-510.	2.6	19
152	Structure and Function of Sulfotransferases. Archives of Biochemistry and Biophysics, 2001, 390, 149-157.	3.0	306
153	PHENOBARBITALRESPONSEELEMENTS OF CYTOCHROMEP450 GENES AND NUCLEAR RECEPTORS. Annual Review of Pharmacology and Toxicology, 2001, 41, 123-143.	9.4	356
154	The dimerization motif of cytosolic sulfotransferases. FEBS Letters, 2001, 490, 39-43.	2.8	99
155	Discovery of Estrogen Sulfotransferase Inhibitors from a Purine Library Screen. Journal of Medicinal Chemistry, 2001, 44, 2683-2686.	6.4	79
156	Nuclear Receptor CAR as a Regulatory Factor for the Sexually Dimorphic Induction of CYP2B1 Gene by Phenobarbital in Rat Livers. Molecular Pharmacology, 2001, 59, 278-284.	2.3	83
157	Promoter CpG methylation ofHox-a10 andHox-a11 in mouse uterus not altered upon neonatal diethylstilbestrol exposure. Molecular Carcinogenesis, 2001, 32, 213-219.	2.7	51
158	Crystal structure-based studies of cytosolic sulfotransferase. Journal of Biochemical and Molecular Toxicology, 2001, 15, 67-75.	3.0	59
159	The phenobarbital response enhancer module in the human bilirubin UDP-glucuronosyltransferase UGT1A1 gene and regulation by the nuclear receptor CAR. Hepatology, 2001, 33, 1232-1238.	7.3	333
160	The Peptide Near the C Terminus Regulates Receptor CAR Nuclear Translocation Induced by Xenochemicals in Mouse Liver. Molecular and Cellular Biology, 2001, 21, 2838-2846.	2.3	152
161	Crystal Structure-Based Analysis of Human Glucuronyltransferase 1 Trends in Glycoscience and Glycotechnology, 2001, 13, 121-129.	0.1	1
162	DRUG INDUCTION OF P450 GENES: HISTORY, MECHANISM, AND IMPLICATION. Drug Metabolism and Pharmacokinetics, 2001, 16, 70-71.	0.0	0

#	Article	IF	Citations
163	Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochemical Journal, 2000, 347, 321.	3.7	274
164	Regulation of cytochrome P450 (CYP) genes by nuclear receptors. Biochemical Journal, 2000, 347, 321-337.	3.7	383
165	Induction of drug metabolism by nuclear receptor CAR: molecular mechanisms and implications for drug research. European Journal of Pharmaceutical Sciences, 2000, 11, 259-264.	4.0	44
166	Estrogen Activation of the Nuclear Orphan Receptor CAR (Constitutive Active Receptor) in Induction of the Mouse <i>Cyp2b10</i> Gene. Molecular Endocrinology, 2000, 14, 1897-1905.	3.7	153
167	Heparan/Chondroitin Sulfate Biosynthesis. Journal of Biological Chemistry, 2000, 275, 34580-34585.	3.4	178
168	Phenobarbital-Elicited Activation of Nuclear Receptor CAR in Induction of Cytochrome P450 Genes. Biochemical and Biophysical Research Communications, 2000, 277, 1-6.	2.1	109
169	Heparan Sulfate Biosynthesis: A Theoretical Study of the Initial Sulfation Step by N-Deacetylase/N-Sulfotransferase. Biophysical Journal, 2000, 79, 2909-2917.	0.5	21
170	Crystal structure of SULT2A3, human hydroxysteroid sulfotransferase. FEBS Letters, 2000, 475, 61-64.	2.8	98
171	Structureâ 'Function Modeling of the Interactions of N-Alkyl-N-hydroxyanilines with Rat Hepatic Aryl Sulfotransferase IV. Chemical Research in Toxicology, 2000, 13, 1251-1258.	3.3	13
172	Estrogen Activation of the Nuclear Orphan Receptor CAR (Constitutive Active Receptor) in Induction of the Mouse Cyp2b10 Gene. Molecular Endocrinology, 2000, 14, 1897-1905.	3.7	50
173	Developmental Action of Estrogen Receptor-α Feminizes the Growth Hormone-Stat5b Pathway and Expression of <i>Cyp2a4</i> and <i>Cyp2d9</i> Genes in Mouse Liver. Molecular Pharmacology, 1999, 56, 473-477.	2.3	67
174	Phenobarbital-Responsive Nuclear Translocation of the Receptor CAR in Induction of the <i>CYP2B</i> Gene. Molecular and Cellular Biology, 1999, 19, 6318-6322.	2.3	523
175	Structure and Function of HNK-1 Sulfotransferase. Journal of Biological Chemistry, 1999, 274, 25608-25612.	3.4	39
176	The Repressed Nuclear Receptor CAR Responds to Phenobarbital in Activating the Human CYP2B6 Gene. Journal of Biological Chemistry, 1999, 274, 6043-6046.	3.4	600
177	Crystal Structure of the Sulfotransferase Domain of Human Heparan SulfateN-Deacetylase/N-Sulfotransferase 1. Journal of Biological Chemistry, 1999, 274, 10673-10676.	3.4	128
178	Substrate Gating Confers Steroid Specificity to Estrogen Sulfotransferase. Journal of Biological Chemistry, 1999, 274, 30019-30022.	3.4	59
179	A quantum mechanical study of the transfer of biological sulfate. Computational and Theoretical Chemistry, 1999, 461-462, 105-111.	1.5	11
180	3â€~-Phosphoadenosine 5â€~-Phosphosulfate Binding Site of Flavonol 3-Sulfotransferase Studied by Affinity Chromatography and 31P NMRâ€. Biochemistry, 1999, 38, 4066-4071.	2.5	22

#	Article	IF	Citations
181	Crystal structure of human catecholamine sulfotransferase 1 1Edited by R. Huber. Journal of Molecular Biology, 1999, 293, 521-530.	4.2	119
182	Are estrogens carcinogenic during development of the testes?. Apmis, 1998, 106, 240-244.	2.0	36
183	Conserved structural motifs in the sulfotransferase family. Trends in Biochemical Sciences, 1998, 23, 129-130.	7.5	158
184	Regulatory DNA elements of phenobarbital-responsive cytochrome P450 CYP2B genes. Journal of Biochemical and Molecular Toxicology, 1998, 12, 3-9.	3.0	67
185	A role of Lys614in the sulfotransferase activity of human heparan sulfateN-deacetylase/N-sulfotransferase. FEBS Letters, 1998, 433, 211-214.	2.8	48
186	Molecular Cloning and Characterization of a Novel Nuclear Protein Kinase in Mice. Archives of Biochemistry and Biophysics, 1998, 352, 31-36.	3.0	23
187	Mouse Steroid Sulfotransferases. Biochemical Pharmacology, 1998, 55, 313-317.	4.4	41
188	Role of CYP2A5 and 2G1 in Acetaminophen Metabolism and Toxicity in the Olfactory Mucosa of the Cyp1a2(â^')â^')Mouse. Biochemical Pharmacology, 1998, 55, 1819-1826.	4.4	46
189	The Sulfuryl Transfer Mechanism. Journal of Biological Chemistry, 1998, 273, 27325-27330.	3.4	135
190	The Nuclear Orphan Receptor CAR-Retinoid X Receptor Heterodimer Activates the Phenobarbital-Responsive Enhancer Module of the <i>CYP2B</i> Gene. Molecular and Cellular Biology, 1998, 18, 5652-5658.	2.3	678
191	Protein serine/threonine phosphatase inhibitors suppress phenobarbital-induced Cyp2b10 gene transcription in mouse primary hepatocytes. Biochemical Journal, 1998, 330, 889-895.	3.7	97
192	Activation by Diverse Xenochemicals of the 51-Base Pair Phenobarbital-Responsive Enhancer Module in the CYP2B10Gene. Molecular Pharmacology, 1998, 53, 597-601.	2.3	170
193	Mouse Glycine N-Methyltransferase is Sexually Dimorphic and Regulated by Growth Hormone. Hormone and Metabolic Research, 1997, 29, 646-649.	1.5	38
194	Characterization of a Phenobarbital-responsive Enhancer Module in Mouse P450 Cyp2b10 Gene. Journal of Biological Chemistry, 1997, 272, 14943-14949.	3.4	128
195	The Structure, Function, and Regulation of Cytochrome P450 2A Enzymes. Drug Metabolism Reviews, 1997, 29, 977-996.	3.6	72
196	Cellular Localization and Regulation of Expression of Testicular Estrogen Sulfotransferase. Endocrinology, 1997, 138, 5006-5012.	2.8	60
197	Reciprocal Sizeâ^'Effect Relationship of the Key Residues in Determining Regio- and Stereospecificities of DHEA Hydroxylase Activity in P450 2a5. Biochemistry, 1997, 36, 3193-3198.	2.5	19
198	Interaction of Aflatoxin B1 with Cytochrome P450 2A5 and Its Mutants:  Correlation with Metabolic Activation and Toxicity. Chemical Research in Toxicology, 1997, 10, 85-90.	3.3	51

#	Article	IF	CITATIONS
199	Transcriptional regulation by HNF-4 of the steroid 15î±-hydroxylase P450 (Cyp2a-4) gene in mouse liver. Journal of Steroid Biochemistry and Molecular Biology, 1997, 62, 307-314.	2.5	31
200	Crystal structure of estrogen sulphotransferase. Nature Structural and Molecular Biology, 1997, 4, 904-908.	8.2	263
201	Steroid hormone-dependent overexpression of cytochromes P450 2A in liver tumors of TGFα transgenic male mice. Journal of Gastroenterology, 1997, 32, 708-711.	5.1	3
202	Cellular Localization and Regulation of Expression of Testicular Estrogen Sulfotransferase. Endocrinology, 1997, 138, 5006-5012.	2.8	18
203	The roles of individual amino acids in altering substrate specificity of the P450 2a4/2a5 enzymes. Biochimie, 1996, 78, 685-694.	2.6	18
204	Structural flexibility and functional versatility of mammalian P450 enzymes. FASEB Journal, 1996, 10, 683-689.	0.5	68
205	Structural flexibility and functional versatility of cytochrome P450 and rapid evolution. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1996, 350, 43-50.	1.0	25
206	Characterization of Phenobarbital-inducible Mouse Cyp2b10 Gene Transcription in Primary Hepatocytes. Journal of Biological Chemistry, 1996, 271, 9746-9753.	3.4	107
207	A DNA methylation site in the male-specific P450 (Cyp 2d-9) promoter and binding of the heteromeric transcription factor GABP. Molecular and Cellular Biology, 1995, 15, 5355-5362.	2.3	83
208	Multiple steroid-binding orientations: alteration of regiospecificity of dehydroepiandrosterone 2-and 7-hydroxylase activities of cytochrome <i>P</i> -450 2a-5 by mutation of residue 209. Biochemical Journal, 1995, 306, 29-33.	3.7	17
209	A nuclear factor (NF2d9) that binds to the male-specific P450 (Cyp 2d-9) gene in mouse liver. Molecular and Cellular Biology, 1995, 15, 4158-4166.	2.3	52
210	Sexually dimorphic DNA demethylation in the promoter of the Slp (sex-limited protein) gene in mouse liver Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 1302-1306.	7.1	57
211	Altering the Regiospecificity of Androstenedione Hydroxylase Activity in P450s 2a-4/5 by a Mutation of the Residue at Position 481. Biochemistry, 1995, 34, 5054-5059.	2.5	23
212	Molecular Engineering of Microsomal P450 2a-4 to a Stable, Water-Soluble Enzyme. Archives of Biochemistry and Biophysics, 1995, 322, 265-271.	3.0	32
213	Molecular characterization of a testis-specific estrogen sulfotransferase and aberrant liver expression in obese and diabetogenic C57BL/KsJ-db/db mice. Endocrinology, 1995, 136, 2477-2484.	2.8	33
214	Overexpression of a cytochrome P-450 of the 2a family (Cyp2a-5) in chemically induced hepatomas from female mice. FEBS Journal, 1994, 219, 791-798.	0.2	19
215	cDNA cloning and sequence of CYP2C29 encoding P-450 MUT-2, a microsomal aldehyde oxygenase. Biochimica Et Biophysica Acta - Bioenergetics, 1994, 1184, 299-301.	1.0	19
216	Lack of the Steroid 151±-Hydroxylase Gene (Cyp2a-4) in Wild Mouse Strain Mus spretus: Rapid Evolution of the P450 Gene Superfamily. Genomics, 1994, 19, 564-566.	2.9	10

#	Article	IF	Citations
217	Activation of aflatoxin B1 by mouse CYP2A enzymes and cytotoxicity in recombinant yeast cells. European Journal of Pharmacology - Environmental Toxicology and Pharmacology Section, 1994, 292, 67-73.	0.8	10
218	Cloning and nucleotide sequence of a novel, male-predominant carboxylesterase in mouse liver. Biochimica Et Biophysica Acta Gene Regulatory Mechanisms, 1993, 1174, 72-74.	2.4	29
219	A trans-acting locus regulates transcriptional repression of the female-specific steroid 15î±-hydroxylase gene in male mice. Journal of Molecular Endocrinology, 1993, 11, 213-222.	2.5	21
220	Site-directed mutagenesis of mouse steroid $7\hat{l}_{\pm}$ -hydroxylase (cytochrome <i>P</i> -4507 \hat{l}_{\pm}): role of residue-209 in determining steroid-cytochrome <i>P</i> -450 interaction. Biochemical Journal, 1993, 291, 569-573.	3.7	51
221	Structural alteration of mouse P450coh by mutation of glycine-207 to proline: spin equilibrium, enzyme kinetics, and heat sensitivity. Biochemical Journal, 1993, 294, 31-34.	3.7	9
222	Molecular characterization of the murine Coh locus: an amino acid difference at position 117 confers high and low coumarin 7-hydroxylase activity in P450coh. Pharmacogenetics and Genomics, 1992, 2, 32-37.	5.7	28
223	Alteration of the substrate specificity of mouse 2A P450s by the identity of residue-209: Steroid-binding site and orientation. Journal of Steroid Biochemistry and Molecular Biology, 1992, 43, 1031-1036.	2.5	14
224	Roles of residues 129 and 209 in the alteration by cytochrome b5 of hydroxylase activities in mouse 2A P450S. Biochemistry, 1992, 31, 11519-11523.	2.5	31
225	Mouse pulmonary cytochrome P-450 naphthalene hydroxylase: cDNA cloning, sequence, and expression in Saccharomyces cerevisiae. Biochemistry, 1991, 30, 11430-11437.	2.5	45
226	Posttranscriptional regulation of coumarin 7-hydroxylase induction by xenobiotics in mouse liver: mRNA stabilization by pyrazole. Biochemistry, 1991, 30, 8041-8045.	2.5	51
227	Comparison between cobalt and pyrazole in the increased expression of coumarin 7-hydroxylase in mouse liver. Biochemical Pharmacology, 1991, 41, 462-465.	4.4	18
228	[33] Modulation of specificity and activity in mammalian cytochrome P-450. Methods in Enzymology, 1991, 202, 741-752.	1.0	7
229	[25] Expression of genes within mouse IIA and IID subfamilies: Simultaneous measurement of homologous P450 mRNAs. Methods in Enzymology, 1991, 206, 267-273.	1.0	8
230	Structures and characterization of sex-specific mouse cytochrome P-450 genes as members within a large family. Duplication boundary and evolution. FEBS Journal, 1991, 195, 477-486.	0.2	26
231	Tissue-specific regulation of cytochrome P-450 dependent testosterone 15α-hydroxylase. Canadian Journal of Physiology and Pharmacology, 1990, 68, 769-776.	1.4	12
232	Characterization of a cDNA for the unexpressed form of cytochrome P-450g from the (-g) rat and differentiation of its mRNA from that of the (+g) phenotype using specific oligoprobes. Biochemistry, 1990, 29, 713-718.	2.5	9
233	Characterization and regulation of sex-specific mouse steroid hydroxylase genes. Canadian Journal of Physiology and Pharmacology, 1990, 68, 754-761.	1.4	10
234	Two steroid 15î±-hydroxylase genes and a homologous gene family in mice. Gene, 1990, 87, 205-211.	2.2	8

#	Article	IF	CITATIONS
235	Alteration of mouse cytochrome P450coh substrate specificity by mutation of a single amino-acid residue. Nature, 1989, 339, 632-634.	27.8	416
236	Characterization of a cDNA for rat P-450g, a highly polymorphic, male-specific cytochrome in the P-450IIC subfamily. Biochemistry, 1989, 28, 5832-5839.	2.5	30
237	Functional characterization of two cytochrome P-450s within the mouse, male-specific steroid 16.alphahydroxylase gene family: expression in mammalian cells and chimeric proteins. Biochemistry, 1989, 28, 4779-4784.	2.5	14
238	Mouse steroid 15.alphahydroxylase gene family: identification of type II P-45015.alpha. as coumarin 7-hydroxylase. Biochemistry, 1989, 28, 4169-4172.	2.5	102
239	Genetic regulation of estrogen-dependent repression of female-specific testosterone 16.alphahydroxylase (I-P-45016.alpha.) in male mouse liver: murine Ripr locus. Biochemistry, 1988, 27, 6444-6448.	2.5	8
240	Rip locus: regulation of female-specific isozyme (I-P-45016.alpha.) of testosterone 16.alphahydroxylase in mouse liver, chromosome localization, and cloning of P-450 cDNA. Biochemistry, 1988, 27, 6434-6443.	2.5	59
241	Substrate specificities of cytochrome P-450, C-P-45016 \hat{l}_{\pm} and P-45015 \hat{l}_{\pm} , and contribution to steroid hydroxylase activities in mouse liver microsomes. Biochemical Pharmacology, 1988, 37, 4778-4780.	4.4	22
242	Gene family of male-specific testosterone 16.alphahydroxylase (C-P-45016.alpha.) in mouse liver: cDNA sequences, neonatal imprinting, and reversible regulation by androgen. Biochemistry, 1987, 26, 8683-8690.	2.5	64
243	Female-predominant expression of testosterone 16α-hydroxylase ("l―P-45016α) and its repression in strain 129/J. Archives of Biochemistry and Biophysics, 1986, 244, 857-864.	3.0	23
244	Genetic regulation of testosterone 15.alphahydroxylase (cytochrome P-45015.alpha.) in renal microsomes of female mice. Biochemistry, 1986, 25, 4913-4918.	2.5	7
245	Sex-dependent expression of mouse testosterone 16 alpha-hydroxylase (cytochrome P-450(16) alpha): cDNA cloning and pretranslational regulation Proceedings of the National Academy of Sciences of the United States of America, 1985, 82, 2024-2028.	7.1	12
246	Characterization of testosterone 16.alphahydroxylase (I-P-45016.alpha.) induced by phenobarbital in mice. Biochemistry, 1985, 24, 5632-5637.	2.5	18
247	Cloning genes that encode inducible forms of P-450. Biochemical Society Transactions, 1984, 12, 99-101.	3.4	1
248	Characterization of Cytochrome P2-450 (20-S) mRNA. Association with the P1-450 Genomic Gene and Differential Response to the Inducers 3-Methylcholanthrene and Isosafrole. FEBS Journal, 1983, 134, 13-18.	0.2	50
249	Structure of the Mouse Cytochrome P1-450 Genomic Gene. FEBS Journal, 1983, 134, 19-25.	0.2	25
250	Genetic Differences in Enzymes which Metabolize Drugs, Chemical Carcinogens, and Other Environmental Pollutants., 1983,, 441-462.		2
251	Cytochrome P1-450 Structural Gene in Mouse, Rat, and Rabbit: Differences in DNA Methylation and Developmental Expression of mRNA*. DNA and Cell Biology, 1982, 1, 231-238.	5.2	23
252	The Ah Locus, A Multigene Family Necessary for Survival in A Chemically Adverse Environment: Comparison With the Immune System. Advances in Genetics, 1982, 21, 1-52.	1.8	99

#	Article	IF	CITATIONS
253	The Ah locus: Correlation of intranuclear appearance of inducer-receptor complex with induction of cytochrome P1-450 mRNA. Cell, 1982, 31, 275-284.	28.9	209
254	Induction of microsomal dimethylnitrosamine demethylase by pyrazole. Biochemical Pharmacology, 1982, 31, 1245-1249.	4.4	36
255	Multiple forms of cytochrome P-450 and the importance of molecular biology and evolution. Biochemical Pharmacology, 1982, 31, 2311-2317.	4.4	149
256	Expression and subcellular distribution of mouse cytochrome P1-450 mRNA as determined by molecular hybridization with cloned P1-450 DNA. Biochemical and Biophysical Research Communications, 1982, 104, 641-648.	2.1	13
257	Similarities between Mouse and Rat-Liver Microsomal Cytochromes P-450 Induced by 3-Methylcholanthrene. Evidence from Catalytic, Immunologic, and Recombinant DNA Studies. FEBS Journal, 1982, 122, 361-368.	0.2	25
258	Isolation and characterization of a cloned DNA sequence associated with the murine Ah locus and a 3-methylcholanthrene-induced form of cytochrome P-450. Proceedings of the National Academy of Sciences of the United States of America, 1981, 78, 800-804.	7.1	71
259	Genetic Mechanisms Controlling the Induction of Polysubstrate Monooxygenase (P-450) Activities. Annual Review of Pharmacology and Toxicology, 1981, 21, 431-462.	9.4	297
260	Distribution and induction of cytochrome P-450 in rat liver nuclear envelope Journal of Cell Biology, 1981, 91, 212-220.	5.2	42
261	Synthesis and insertion of cytochrome P-450 into endoplasmic reticulum membranes Proceedings of the National Academy of Sciences of the United States of America, 1980, 77, 965-969.	7.1	172
262	Biosynthesis of cytochrome P-450 on membrane-bound ribosomes and its subsequent incorporation into rough and smooth microsomes in rat hepatocytes Journal of Cell Biology, 1979, 81, 510-519.	5.2	53
263	Separation of acetanilide and its hydroxylated metabolites and quantitative determination of "acetanilide 4-hydroxylase activity―by high-pressure liquid chromatography. Analytical Biochemistry, 1979, 96, 201-207.	2.4	56
264	Purification and Partial Characterization of Hepatic Microsomal Cytochrome P-450s from Phenobarbital-and 3-Methylcholanthrene-Treated Rats1. Journal of Biochemistry, 1979, 86, 1383-1394.	1.7	57
265	Site of biosynthesis of cytochrome P450 in hepatocytes of phenobarbital treated rats. Biochemical and Biophysical Research Communications, 1976, 71, 1153-1160.	2.1	47
266	Localization of nascent NADPH-cytochrome c reductase in rat liver microsomes. Biochimica Et Biophysica Acta - General Subjects, 1975, 381, 215-220.	2.4	20
267	The Early Stage of Labeling of Microsomal Membrane Proteins in Rat Liver by Radioactive Amino Acids. Journal of Biochemistry, 1972, 72, 1407-1417.	1.7	10
268	Presence of Apo-cytochrome b5 in Microsomes from Rat Liver*. Journal of Biochemistry, 1970, 67, 745-747.	1.7	28