List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3390055/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. , 2022, 10, e003289.		31
2	The Road to CAR T-Cell Therapies for Pediatric CNS Tumors: Obstacles and New Avenues. Frontiers in Oncology, 2022, 12, 815726.	1.3	1
3	Childhood Medulloblastoma: An Overview. Methods in Molecular Biology, 2022, 2423, 1-12.	0.4	5
4	Discovery of HDAC6-Selective Inhibitor NN-390 with <i>in Vitro</i> Efficacy in Group 3 Medulloblastoma. Journal of Medicinal Chemistry, 2022, 65, 3193-3217.	2.9	16
5	Diversity among health care leaders in Canada: a cross-sectional study of perceived gender and race. Cmaj, 2022, 194, E371-E377.	0.9	11
6	Real-time evaluation of a hydrogel delivery vehicle for cancer immunotherapeutics within embedded spheroid cultures. Journal of Controlled Release, 2022, 348, 386-396.	4.8	2
7	Intratumoral heterogeneity associated with glioblastoma drug response and resistance. , 2021, , 185-199.		0
8	ETS-Domain Transcription Factor Elk-1 Regulates Stemness Genes in Brain Tumors and CD133+ BrainTumor-Initiating Cells. Journal of Personalized Medicine, 2021, 11, 125.	1.1	9
9	Advances in Immunotherapy for Adult Glioblastoma. Cancers, 2021, 13, 3400.	1.7	9
10	NGMA-5. An in vivo functional genomics screen to identify novel drivers of lung-to-brain metastasis. Neuro-Oncology Advances, 2021, 3, ii5-ii5.	0.4	0
11	BSCI-18. Identifying novel drivers of lung-to-brain metastasis through in vivo functional genomics. Neuro-Oncology Advances, 2021, 3, iii5-iii5.	0.4	0
12	Identification of five important genes to predict glioblastoma subtypes. Neuro-Oncology Advances, 2021, 3, vdab144.	0.4	2
13	InÂvitro evaluation of CAR-T cells in patient-derived glioblastoma models. STAR Protocols, 2021, 2, 100920.	0.5	5
14	Comparison of two drainage systems on chronic subdural hematoma (CSDH) recurrence. Journal of Neurological Surgery, Part A: Central European Neurosurgery, 2021, 0, .	0.4	0
15	Low and steady wins the race: for melanoma-brain metastases, is prevention better than a cure?. Neuro-Oncology, 2021, , .	0.6	0
16	Delirium and other neuropsychiatric manifestations of COVID-19 infection in people with preexisting psychiatric disorders: a systematic review. Journal of Medical Case Reports, 2021, 15, 586.	0.4	5
17	Temporal profiling of therapy resistance in human medulloblastoma identifies novel targetable drivers of recurrence. Science Advances, 2021, 7, eabi5568.	4.7	8
18	A CD133-AKT-Wnt signaling axis drives glioblastoma brain tumor-initiating cells. Oncogene, 2020, 39, 1590-1599.	2.6	31

#	Article	IF	CITATIONS
19	Strategies to Enhance the Efficacy of T-Cell Therapy for Central Nervous System Tumors. Frontiers in Immunology, 2020, 11, 599253.	2.2	11
20	A Patient-Derived Xenograft Model of Clioblastoma. STAR Protocols, 2020, 1, 100179.	0.5	8
21	WNT: an unexpected tumor suppressor in medulloblastoma. Molecular and Cellular Oncology, 2020, 7, 1834903.	0.3	2
22	Impact of COVID-19 and other pandemics and epidemics on people with pre-existing mental disorders: a systematic review protocol and suggestions for clinical care. BMJ Open, 2020, 10, e040229.	0.8	21
23	Wnt activation as a therapeutic strategy in medulloblastoma. Nature Communications, 2020, 11, 4323.	5.8	34
24	Assessing the Safety of a Cell-Based Immunotherapy for Brain Cancers Using a Humanized Model of Hematopoiesis. STAR Protocols, 2020, 1, 100124.	0.5	1
25	De novo necroptosis creates an inflammatory environment mediating tumor susceptibility to immune checkpoint inhibitors. Communications Biology, 2020, 3, 645.	2.0	30
26	RAD51-Mediated DNA Homologous Recombination Is Independent of PTEN Mutational Status. Cancers, 2020, 12, 3178.	1.7	10
27	Development of a peptide-based delivery platform for targeting malignant brain tumors. Biomaterials, 2020, 252, 120105.	5.7	15
28	The Rational Development of CD133-Targeting Immunotherapies for Glioblastoma. Cell Stem Cell, 2020, 26, 832-844.e6.	5.2	114
29	The Strange Case of Jekyll and Hyde: Parallels Between Neural Stem Cells and Glioblastoma-Initiating Cells. Frontiers in Oncology, 2020, 10, 603738.	1.3	7
30	Metabolic Regulation of the Epigenome Drives Lethal Infantile Ependymoma. Cell, 2020, 181, 1329-1345.e24.	13.5	79
31	Preclinical Testing of CAR T Cells in a Patient-Derived Xenograft Model of Glioblastoma. STAR Protocols, 2020, 1, 100174.	0.5	6
32	Salvage Therapy for Childhood Medulloblastoma: A Single Center Experience. Canadian Journal of Neurological Sciences, 2019, 46, 403-414.	0.3	4
33	A C19MC-LIN28A-MYCN Oncogenic Circuit Driven by Hijacked Super-enhancers Is a Distinct Therapeutic Vulnerability in ETMRs: A Lethal Brain Tumor. Cancer Cell, 2019, 36, 51-67.e7.	7.7	69
34	MEDU-44. MUSASHI-1 IS A MASTER REGULATOR OF ABERRANT TRANSLATION IN GROUP 3 MEDULLOBLASTOMA. Neuro-Oncology, 2019, 21, ii112-ii113.	0.6	0
35	Deciphering brain tumor heterogeneity, one cell at a time. Nature Medicine, 2019, 25, 1474-1476.	15.2	8
36	Predictive measures and outcomes of extent of resection in juvenile pilocytic astrocytoma. Journal of Clinical Neuroscience, 2019, 70, 79-84.	0.8	6

#	Article	IF	CITATIONS
37	A rapid in vitro methodology for simultaneous target discovery and antibody generation against functional cell subpopulations. Scientific Reports, 2019, 9, 842.	1.6	10
38	Bmi1 regulates human glioblastoma stem cells through activation of differential gene networks in CD133+ brain tumor initiating cells. Journal of Neuro-Oncology, 2019, 143, 417-428.	1.4	13
39	Childhood cerebellar tumours mirror conserved fetal transcriptional programs. Nature, 2019, 572, 67-73.	13.7	293
40	Regulation of the proline regulatory axis and autophagy modulates stemness in TP73/p73 deficient cancer stem-like cells. Autophagy, 2019, 15, 934-936.	4.3	16
41	TAp73 Modifies Metabolism and Positively Regulates Growth of Cancer Stem–Like Cells in a Redox-Sensitive Manner. Clinical Cancer Research, 2019, 25, 2001-2017.	3.2	25
42	In Vivo Murine Models of Brain Metastasis. Methods in Molecular Biology, 2019, 1869, 231-238.	0.4	1
43	BMI1 is a therapeutic target in recurrent medulloblastoma. Oncogene, 2019, 38, 1702-1716.	2.6	20
44	EPH Profiling of BTIC Populations in Glioblastoma Multiforme Using CyTOF. Methods in Molecular Biology, 2019, 1869, 155-168.	0.4	7
45	In Vitro Assays for Screening Small Molecules. Methods in Molecular Biology, 2019, 1869, 189-196.	0.4	0
46	In Vitro Self-Renewal Assays for Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 79-84.	0.4	5
47	Differentiation of Brain Tumor Initiating Cells. Methods in Molecular Biology, 2019, 1869, 85-91.	0.4	2
48	Introduction to Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 1-9.	0.4	7
49	Flow Cytometric Analysis of Brain Tumor Stem Cells. Methods in Molecular Biology, 2019, 1869, 69-77.	0.4	2
50	Therapeutic targeting of ependymoma as informed by oncogenic enhancer profiling. Nature, 2018, 553, 101-105.	13.7	170
51	Introduction to Cancer Stem Cells: Past, Present, and Future. Methods in Molecular Biology, 2018, 1692, 1-16.	0.4	16
52	EMT: Mechanisms and therapeutic implications. , 2018, 182, 80-94.		334
53	Atraumatic versus conventional lumbar puncture needles: a systematic review and meta-analysis. Lancet, The, 2018, 391, 1197-1204.	6.3	126
54	Biopsy Versus Subtotal Versus Gross Total Resection in Patients with Low-Grade Glioma: A Systematic Review and Meta-Analysis. World Neurosurgery, 2018, 120, e762-e775.	0.7	22

#	Article	IF	CITATIONS
55	Phosphoglycerate dehydrogenase inhibition induces p-mTOR-independent autophagy and promotes multilineage differentiation in embryonal carcinoma stem-like cells. Cell Death and Disease, 2018, 9, 990.	2.7	22
56	Association of Glioblastoma Multiforme Stem Cell Characteristics, Differentiation, and Microglia Marker Genes with Patient Survival. Stem Cells International, 2018, 2018, 1-19.	1.2	30
57	Cotargeting Ephrin Receptor Tyrosine Kinases A2 and A3 in Cancer Stem Cells Reduces Growth of Recurrent Glioblastoma. Cancer Research, 2018, 78, 5023-5037.	0.4	36
58	Therapeutic Targeting of the Premetastatic Stage in Human Lung-to-Brain Metastasis. Cancer Research, 2018, 78, 5124-5134.	0.4	35
59	Evaluating overweight and obesity prevalence in survivors of childhood brain tumors: a systematic review protocol. Systematic Reviews, 2017, 6, 43.	2.5	5
60	Development of an Atypical Teratoid Rhabdoid Tumor in a Meningioma. International Journal of Surgical Pathology, 2017, 25, 567-572.	0.4	4
61	Atraumatic versus traumatic lumbar puncture needles: a systematic review and meta-analysis protocol. BMJ Open, 2017, 7, e014478.	0.8	6
62	Adiposity in childhood brain tumors: A report from the Canadian Study of Determinants of Endometabolic Health in Children (CanDECIDE Study). Scientific Reports, 2017, 7, 45078.	1.6	9
63	RNAi screen identifies essential regulators of human brain metastasis-initiating cells. Acta Neuropathologica, 2017, 134, 923-940.	3.9	26
64	Convergence of BMI1 and CHD7 on ERK Signaling in Medulloblastoma. Cell Reports, 2017, 21, 2772-2784.	2.9	31
65	Progression of atypical extraventricular neurocytoma to anaplastic ganglioglioma. Human Pathology, 2017, 59, 125-130.	1.1	11
66	The use of ibuprofen and acetaminophen for acute headache in the postconcussive youth: A pilot study. Paediatrics and Child Health, 2017, 22, 2-6.	0.3	17
67	Preclinical Modeling and Therapeutic Avenues for Cancer Metastasis to the Central Nervous System. Frontiers in Oncology, 2017, 7, 220.	1.3	3
68	Brain tumor initiating cells: with great technology will come greater understanding. Future Neurology, 2017, 12, 223-236.	0.9	1
69	The effectiveness of interventions to treat obesity in survivors of childhood brain tumors: a systematic review protocol. Systematic Reviews, 2016, 5, 101.	2.5	4
70	Development of a Patient-Derived Xenograft Model Using Brain Tumor Stem Cell Systems to Study Cancer. Methods in Molecular Biology, 2016, 1458, 231-245.	0.4	4
71	The identification of human pituitary adenoma-initiating cells. Acta Neuropathologica Communications, 2016, 4, 125.	2.4	29
72	Subdural Hematoma Mimickers: A Systematic Review. World Neurosurgery, 2016, 93, 73-80.	0.7	18

SHEILA K SINGH

#	Article	IF	CITATIONS
73	A novel stem cell culture model of recurrent glioblastoma. Journal of Neuro-Oncology, 2016, 126, 57-67.	1.4	17
74	Reply to Letter. Annals of Surgery, 2015, 262, e114-e115.	2.1	0
75	MicroRNA Regulation of Brain Tumour Initiating Cells in Central Nervous System Tumours. Stem Cells International, 2015, 2015, 1-15.	1.2	20
76	The Role of Stem Cells in Pediatric Central Nervous System Malignancies. Advances in Experimental Medicine and Biology, 2015, 853, 49-68.	0.8	7
77	Letter to the Editor: Temporal evolution of medulloblastoma subgroups. Journal of Neurosurgery: Pediatrics, 2015, 16, 349-351.	0.8	0
78	Biopsy versus partial versus gross total resection in older patients with high-grade glioma: a systematic review and meta-analysis. Neuro-Oncology, 2015, 17, 868-881.	0.6	131
79	A Balanced Protocol for Return to School for Children and Youth Following Concussive Injury. Clinical Pediatrics, 2015, 54, 783-792.	0.4	66
80	Pyrvinium Targets CD133 in Human Glioblastoma Brain Tumor–Initiating Cells. Clinical Cancer Research, 2015, 21, 5324-5337.	3.2	48
81	Flow-Cytometric Identification and Characterization of Neural Brain Tumor-Initiating Cells for Pathophysiological Study and Biomedical Applications. , 2015, , 199-211.		0
82	Development of a Conservative Protocol to Return Children and Youth to Activity Following Concussive Injury. Clinical Pediatrics, 2015, 54, 152-163.	0.4	32
83	Endovascular Thrombectomy for Acute Ischemic Stroke. JAMA - Journal of the American Medical Association, 2015, 314, 1832.	3.8	392
84	Culture and Isolation of Brain Tumor Initiating Cells. Current Protocols in Stem Cell Biology, 2015, 34, 3.3.1-3.3.13.	3.0	8
85	STAT3 pathway regulates lung-derived brain metastasis initiating cell capacity through miR-21 activation. Oncotarget, 2015, 6, 27461-27477.	0.8	55
86	Brain Metastasis-Initiating Cells: Survival of the Fittest. International Journal of Molecular Sciences, 2014, 15, 9117-9133.	1.8	22
87	Brain Tumor Genomics. , 2014, , 321-338.		0
88	Chronic Subdural Hematoma Management. Annals of Surgery, 2014, 259, 449-457.	2.1	332
89	Generation of Murine Xenograft Models of Brain Tumors from Primary Human Tissue for In Vivo Analysis of the Brain Tumor-Initiating Cell. Methods in Molecular Biology, 2014, 1210, 37-49	0.4	5
90	Revealed: The spy who regulates neuroblastoma stem cells. Oncotarget, 2014, 5, 11014-11016.	0.8	1

#	Article	IF	CITATIONS
91	Medulloblastoma stem cells: Modeling tumor heterogeneity. Cancer Letters, 2013, 338, 23-31.	3.2	32
92	FoxG1 Interacts with Bmi1 to Regulate Self-Renewal and Tumorigenicity of Medulloblastoma Stem Cells, 2013, 31, 1266-1277.	1.4	53
93	Personalizing the Treatment of Pediatric Medulloblastoma: Polo-like Kinase 1 as a Molecular Target in High-Risk Children. Cancer Research, 2013, 73, 6734-6744.	0.4	79
94	A Cancer Stem Cell Model for Studying Brain Metastases From Primary Lung Cancer. Journal of the National Cancer Institute, 2013, 105, 551-562.	3.0	50
95	Evolution of brain tumor-initiating cell research: in pursuit of a moving target. Future Neurology, 2013, 8, 1-3.	0.9	3
96	Investigating the Link between Molecular Subtypes of Glioblastoma, Epithelial-Mesenchymal Transition, and CD133 Cell Surface Protein. PLoS ONE, 2013, 8, e64169.	1.1	73
97	Medulloblastoma stem cells: where development and cancer cross pathways. Pediatric Research, 2012, 71, 516-522.	1.1	52
98	GBM secretome induces transient transformation of human neural precursor cells. Journal of Neuro-Oncology, 2012, 109, 457-466.	1.4	20
99	Processing of Primary Brain Tumor Tissue for Stem Cell Assays and Flow Sorting. Journal of Visualized Experiments, 2012, , .	0.2	16
100	Polo-Like Kinase 1 Inhibition Kills Glioblastoma Multiforme Brain Tumor Cells in Part Through Loss of SOX2 and Delays Tumor Progression in Mice. Stem Cells, 2012, 30, 1064-1075.	1.4	66
101	Bmi1 marks intermediate precursors during differentiation of human brain tumor initiating cells. Stem Cell Research, 2012, 8, 141-153.	0.3	45
102	Origins of Metastasis-Initiating Cells. , 2012, , 229-246.		0
103	YB-1 Bridges Neural Stem Cells and Brain Tumor–Initiating Cells via Its Roles in Differentiation and Cell Growth. Cancer Research, 2011, 71, 5569-5578.	0.4	74
104	Cancer Stem Cells in Brain Cancer. , 2011, , 37-56.		1
105	From Birth Till Death: Neurogenesis, Cell Cycle, and Neurodegeneration. Anatomical Record, 2009, 292, 1953-1961.	0.8	22
106	Culture and Isolation of Brain Tumor Initiating Cells. Current Protocols in Stem Cell Biology, 2009, 11, Unit3.3.	3.0	21
107	Brain Tumor Stem Cells: Identification and Concepts. Neurosurgery Clinics of North America, 2007, 18, 31-38.	0.8	53
108	Cancer stem cells in nervous system tumors. Oncogene, 2004, 23, 7267-7273.	2.6	670

SHEILA K SINGH

#	Article	IF	CITATIONS
109	Identification of human brain tumour initiating cells. Nature, 2004, 432, 396-401.	13.7	6,758
110	Identification of a cancer stem cell in human brain tumors. Cancer Research, 2003, 63, 5821-8.	0.4	3,675
111	Cerebral salt wasting: Truths, fallacies, theories, and challenges. Critical Care Medicine, 2002, 30, 2575-2579.	0.4	220
112	A method to estimate urinary electrolyte excretion in patients at risk for developing cerebral salt wasting. Journal of Neurosurgery, 2001, 95, 420-424.	0.9	31
113	Identification and Co-Targeting of EphA2/EphA3 Cancer Stem Cells in Recurrent Human Glioblastoma. SSRN Electronic Journal, 0, , .	0.4	0
114	Dual Antigen T Cell Engagers Targeting CA9 as an Effective Immunotherapeutic Modality for Targeting CA9 in Solid Tumors. Frontiers in Immunology, 0, 13, .	2.2	5