
Matthew G Varga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3389281/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	miR-101-2, miR-125b-2 and miR-451a act as potential tumor suppressors in gastric cancer through regulation of the PI3K/AKT/mTOR pathway. Cellular Oncology (Dordrecht), 2016, 39, 23-33.	4.4	106
2	Pathogenic H elicobacter pylori strains translocate DNA and activate TLR9 via the cancer-associated cag type IV secretion system. Oncogene, 2016, 35, 6262-6269.	5.9	99
3	Serologic Response to Helicobacter pylori Proteins Associated With Risk of Colorectal Cancer Among Diverse Populations in the United States. Gastroenterology, 2019, 156, 175-186.e2.	1.3	84
4	Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection. Infection and Immunity, 2015, 83, 4134-4141.	2.2	63
5	Modification of the Gastric Mucosal Microbiota by a Strain-Specific Helicobacter pylori Oncoprotein and Carcinogenic Histologic Phenotype. MBio, 2019, 10, .	4.1	36
6	TLR9 activation suppresses inflammation in response to <i>Helicobacter pylori</i> infection. American Journal of Physiology - Renal Physiology, 2016, 311, G852-G858.	3.4	35
7	Standard Bacteriophage Purification Procedures Cause Loss in Numbers and Activity. Viruses, 2021, 13, 328.	3.3	35
8	Smoking, <i>Helicobacter Pylori</i> Serology, and Gastric Cancer Risk in Prospective Studies from China, Japan, and Korea. Cancer Prevention Research, 2019, 12, 667-674.	1.5	33
9	DNA Transfer and Toll-like Receptor Modulation by Helicobacter pylori. Current Topics in Microbiology and Immunology, 2017, 400, 169-193.	1.1	30
10	Use of Letermovir for Salvage Therapy for Resistant Cytomegalovirus in a Pediatric Hematopoietic Stem Cell Transplant Recipient. Journal of the Pediatric Infectious Diseases Society, 2020, 9, 486-489.	1.3	23
11	Racial Differences in <i>Helicobacter pylori</i> CagA Sero-prevalence in a Consortium of Adult Cohorts in the United States. Cancer Epidemiology Biomarkers and Prevention, 2020, 29, 2084-2092.	2.5	18
12	Notch Signaling Pathway Is Activated by Sulfate Reducing Bacteria. Frontiers in Cellular and Infection Microbiology, 2021, 11, 695299.	3.9	17
13	Performance of multiplex serology in discriminating active vs past <i>Helicobacter pylori</i> infection in a primarily African American population in the southeastern United States. Helicobacter, 2020, 25, e12671.	3.5	12
14	<i>Helicobacter pylori</i> Blood Biomarkers and Gastric Cancer Survival in China. Cancer Epidemiology Biomarkers and Prevention, 2018, 27, 342-344.	2.5	11
15	Epstein–Barr Virus Antibody Titers Are Not Associated with Gastric Cancer Risk in East Asia. Digestive Diseases and Sciences, 2018, 63, 2765-2772.	2.3	11
16	Intestinal Alkaline Phosphatase Prevents Sulfate Reducing Bacteria-Induced Increased Tight Junction Permeability by Inhibiting Snail Pathway. Frontiers in Cellular and Infection Microbiology, 2022, 12, .	3.9	10
17	Association of a novel 27-gene immuno-oncology assay with efficacy of immune checkpoint inhibitors in advanced non-small cell lung cancer. BMC Cancer, 2022, 22, 407.	2.6	9
18	Genetic Evolution of a <i>Helicobacter pylori</i> Acid-Sensing Histidine Kinase and Gastric Disease. Journal of Infectious Diseases, 2016, 214, 644-648.	4.0	8

MATTHEW G VARGA

#	Article	IF	CITATIONS
19	Epsteinâ€Barr virus, but not human cytomegalovirus, is associated with a highâ€grade human papillomavirus–associated cervical lesions among women in North Carolina. Journal of Medical Virology, 2019, 91, 450-456.	5.0	7
20	Immunostimulatory membrane proteins potentiate <i>H. pylori</i> -induced carcinogenesis by enabling CagA translocation. Gut Microbes, 2021, 13, 1-13.	9.8	6
21	Su1822 Alteration of Murine Intestinal Microbiota by Gastric Helicobacter pylori Infection. Gastroenterology, 2015, 148, S-527.	1.3	2
22	Helicobacter pylori -Mediated Carcinogenesis. , 2018, , .		1
23	Mo1725 – Helicobacter Pylori Infection Does Not Modify the Protective Effect of Regular Aspirin Use on Colorectal Cancer Risk in a Population of US Adults. Gastroenterology, 2019, 156, S-821-S-822.	1.3	1
24	Serum antibodies to selected Helicobacter pylori antigens are associated with active gastritis in patients seen at the University Teaching Hospital in Lusaka, Zambia. Malawi Medical Journal, 2022, 34, 17-24.	0.6	1
25	102 Helicobacter pylori Activates TLR-9 in a cag-Dependent Manner Which Is Related to Gastric Cancer Risk. Gastroenterology, 2013, 144, S-24.	1.3	0
26	179 Helicobacter pylori cag Secretion System-Mediated Up-Regulation of the Innate Immune Receptor TLR9. Gastroenterology, 2014, 146, S-47.	1.3	0
27	Su1831 Toll-Like Receptor 9 Suppresses the Progression to H. pylori-Induced Injury and Cancer. Gastroenterology, 2015, 148, S-529.	1.3	0
28	697 Role of an Acid-Sensing Histidine Kinase in H. pylori Pathogenesis. Gastroenterology, 2015, 148, S-137.	1.3	0
29	1133 – ÎÎÎInduction of Gastric Dysbiosis by Carcinogenic Helicobacter Pylori is Altered by the Oncoprotein Caga and Segregates with Premalignant and Malignant Histologic Phenotypes. Gastroenterology, 2019, 156, S-240.	1.3	0
30	Su1264 – Helicobacter Pylori Antibody Prevalence by Year of Birth and Demographic Factors in a Consortium of US Adults. Gastroenterology, 2019, 156, S-523-S-524.	1.3	0
31	Su1261 – Smoking, Helicobacter Pylori Serology, and Gastric Cancer Risk in a Consortium of Prospective Studies from China, Japan, and Korea. Gastroenterology, 2019, 156, S-523.	1.3	0
32	Reply. Gastroenterology, 2019, 156, 2356.	1.3	0
33	Su506 SULFATE REDUCING BACTERIA INDUCE PRO-INFLAMMATORY NOTCH SIGNALING PATHWAY. Gastroenterology, 2021, 160, S-720.	1.3	0
34	Sa601 THE SULFATE-REDUCING BACTERIUM DESULFOVIBRIO VULGARIS DISRUPTS EPITHELIAL TIGHT JUNCTIONS AND INCREASES EPITHELIAL BARRIER PERMEABILITY. Gastroenterology, 2021, 160, S-569.	1.3	0
35	Su125 STANDARD PURIFICATION METHODS REDUCE BACTERIOPHAGE NUMBER AND ACTIVITY. Gastroenterology, 2021, 160, S-626.	1.3	0
36	Su509 BACTERIOPHAGE DNA ACTIVATES TLR9 IN A PHAGE-SPECIFIC AND DOSE-DEPENDENT MANNER. Gastroenterology, 2021, 160, S-720-S-721.	1.3	0

#	Article	IF	CITATIONS
37	466â€Use of a 27-gene immuno-oncology (IO) assay to associate response to single-agent immune checkpoint inhibitor (ICI) therapy in advanced-stage NSCLC patients from a large Canadian cohort. , 2021, 9, A495-A495.		0