
Tobias Brink

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/3387774/publications.pdf Version: 2024-02-01

TORIAS RDINK

#	Article	IF	CITATIONS
1	Understanding Grain Boundary Electrical Resistivity in Cu: The Effect of Boundary Structure. ACS Nano, 2021, 15, 16607-16615.	14.6	65
2	Local segregation versus irradiation effects in high-entropy alloys: Steady-state conditions in a driven system. Journal of Applied Physics, 2017, 122, .	2.5	61
3	Emergence of self-affine surfaces during adhesive wear. Nature Communications, 2019, 10, 1116.	12.8	55
4	Low Temperature Heat Capacity of a Severely Deformed Metallic Glass. Physical Review Letters, 2014, 112, 135501.	7.8	52
5	Asperity-Level Origins of Transition from Mild to Severe Wear. Physical Review Letters, 2018, 120, 186105.	7.8	51
6	Influence of Crystalline Nanoprecipitates on Shear-Band Propagation in Cu-Zr-Based Metallic Glasses. Physical Review Applied, 2016, 5, .	3.8	42
7	Structural origins of the boson peak in metals: From high-entropy alloys to metallic glasses. Physical Review B, 2016, 94, .	3.2	41
8	Adhesive wear mechanisms uncovered by atomistic simulations. Friction, 2018, 6, 245-259.	6.4	41
9	From metallic glasses to nanocrystals: Molecular dynamics simulations on the crossover from glass-like to grain-boundary-mediated deformation behaviour. Acta Materialia, 2018, 156, 205-214.	7.9	38
10	Role of interfacial adhesion on minimum wear particle size and roughness evolution. Physical Review E, 2020, 102, 043001.	2.1	22
11	Interface-controlled creep in metallic glass composites. Acta Materialia, 2017, 141, 251-260.	7.9	20
12	A parameter-free mechanistic model of the adhesive wear process of rough surfaces in sliding contact. Journal of the Mechanics and Physics of Solids, 2021, 147, 104238.	4.8	20
13	Adhesive wear and interaction of tangentially loaded micro-contacts. International Journal of Solids and Structures, 2020, 188-189, 261-268.	2.7	17
14	Dual phase patterning during a congruent grain boundary phase transition in elemental copper. Nature Communications, 2022, 13, .	12.8	17
15	Adhesive wear mechanisms in the presence of weak interfaces: Insights from an amorphous model system. Physical Review Materials, 2019, 3, .	2.4	15
16	Solid-state amorphization of Cu nanolayers embedded in a <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:mrow><mml:msub><mml:mi>Cu</mml:mi><mml: Physical Review B, 2015, 91, .</mml: </mml:msub></mml:mrow></mml:math 	ຠ ո୬<i>6</i>⁄4	າມ ເໝ ານ> ພາ</td
17	Effect of wear particles and roughness on nanoscale friction. Physical Review Materials, 2022, 6, .	2.4	8
18	Elastostatic loading of metallic glass-crystal nanocomposites: Relationship of creep rate and interface energy. Physical Review Materials, 2019, 3, .	2.4	6

2

#	Article	IF	CITATIONS
19	A Simple Mechanistic Model for Friction of Rough Partially Lubricated Surfaces. Tribology Letters, 2021, 69, 1.	2.6	Ο