Alain Jacquier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/338742/publications.pdf Version: 2024-02-01

ALAIN ACOLLER

#	Article	IF	CITATIONS
1	RNA Degradation by the Exosome Is Promoted by a Nuclear Polyadenylation Complex. Cell, 2005, 121, 713-724.	28.9	786
2	Cryptic Pol II Transcripts Are Degraded by a Nuclear Quality Control Pathway Involving a New Poly(A) Polymerase. Cell, 2005, 121, 725-737.	28.9	764
3	Widespread bidirectional promoters are the major source of cryptic transcripts in yeast. Nature, 2009, 457, 1038-1042.	27.8	557
4	The complex eukaryotic transcriptome: unexpected pervasive transcription and novel small RNAs. Nature Reviews Genetics, 2009, 10, 833-844.	16.3	394
5	Dealing with Pervasive Transcription. Molecular Cell, 2013, 52, 473-484.	9.7	250
6	Cdc48-associated complex bound to 60S particles is required for the clearance of aberrant translation products. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 5046-5051.	7.1	218
7	The cryo-EM structure of a ribosome–Ski2-Ski3-Ski8 helicase complex. Science, 2016, 354, 1431-1433.	12.6	108
8	Quality control of transcription start site selection by nonsense-mediated-mRNA decay. ELife, 2015, 4, .	6.0	108
9	Linking functionally related genes by sensitive and quantitative characterization of genetic interaction profiles. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 5821-5826.	7.1	107
10	Futile Cycle of Transcription Initiation and Termination Modulates the Response to Nucleotide Shortage in S. cerevisiae. Molecular Cell, 2008, 31, 671-682.	9.7	93
11	A Yeast Exosome Cofactor, Mpp6, Functions in RNA Surveillance and in the Degradation of Noncoding RNA Transcripts. Molecular and Cellular Biology, 2008, 28, 5446-5457.	2.3	84
12	Structure of the 80S ribosome–Xrn1 nuclease complex. Nature Structural and Molecular Biology, 2019, 26, 275-280.	8.2	62
13	The complete set of H/ACA snoRNAs that guide rRNA pseudouridylations in Saccharomyces cerevisiae. Rna, 2005, 11, 928-938.	3.5	51
14	Exposure to selenomethionine causes selenocysteine misincorporation and protein aggregation in Saccharomyces cerevisiae. Scientific Reports, 2017, 7, 44761.	3.3	44
15	Nonsenseâ€mediated <scp>mRNA</scp> decay involves two distinct Upf1â€bound complexes. EMBO Journal, 2018, 37, .	7.8	37
16	The p21-Activated Protein Kinase Inhibitor Skb15 and Its Budding Yeast Homologue Are 60S Ribosome Assembly Factors. Molecular and Cellular Biology, 2007, 27, 2897-2909.	2.3	30
17	Long Open Reading Frame Transcripts Escape Nonsense-Mediated mRNA Decay in Yeast. Cell Reports, 2014, 6, 593-598.	6.4	29
18	A specialised <scp>SKI</scp> complex assists the cytoplasmic <scp>RNA</scp> exosome in the absence of direct association with ribosomes. EMBO Journal, 2019, 38, e100640.	7.8	24

Alain Jacquier

#	Article	IF	CITATIONS
19	The yeastRPL9Bgene is regulated by modulation between two modes of transcription termination. EMBO Journal, 2012, 31, 2427-2437.	7.8	22
20	Investigation of RNA metabolism through large-scale genetic interaction profiling in yeast. Nucleic Acids Research, 2021, 49, 8535-8555.	14.5	4
21	Enrichment of Unstable Non-coding RNAs and Their Genome-Wide Identification. Methods in Molecular Biology, 2011, 759, 87-106.	0.9	4